Geochemistry of Middle Holocene sediments from south Yellow Sea: Implications to provenance and climate change

Xiaoxia Lü , Gerard J. M. Versteegh , Jinming Song , Xuegang Li , Huamao Yuan , Ning Li

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (5) : 751 -762.

PDF
Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (5) : 751 -762. DOI: 10.1007/s12583-015-0577-0
Article

Geochemistry of Middle Holocene sediments from south Yellow Sea: Implications to provenance and climate change

Author information +
History +
PDF

Abstract

From a large number of case studies on terrestrial deposits we know that Late Holocene climate fluctuations have an important impact on the terrestrial environments. However, it is hitherto not clear how the marine sediments can be used to shed light on the environment and climate change of the catchment. To provide such insight, we used the major element, trace element and rare earth element (REE) compositions in the southern Yellow Sea (SYS) sediments to reconstruct the changes in weathering and erosion of their source regions. The sediments originate predominantly from the upper crust of East China and are transported into the basin especially by the Yellow River (Huanghe) and to a lesser extent by the Yangtze River (Changjiang). The chemical index of alteration (CIA; 53.7–59.7) suggests low chemical weathering of the source rocks since the Middle Holocene. This is consistent with the relatively cool and arid climate in North China after the Holocene Megathermal. Comparison of element ratios, including Al/Ca, K/Ca, Al/Na, K/Na, Rb/Sr, Li/Ba and the CIA shows that we can use the latter as a robust proxy for climate change. The CIA-based mean annual precipitation and mean annual temperature show a series of climate fluctuations in the catchment. A relatively warm and humid Period I (5.3–2.9 cal. ka BP), a relatively cool and dry Period II (2.9–0.9 cal. ka BP) and an increasingly cool and dry Period III (0.9–0.3 cal. ka BP). These periods can be linked to climate intervals recognized elsewhere.

Keywords

geochemical composition / elemental ratio / climate change / provenance / South Yellow Sea sediment

Cite this article

Download citation ▾
Xiaoxia Lü, Gerard J. M. Versteegh, Jinming Song, Xuegang Li, Huamao Yuan, Ning Li. Geochemistry of Middle Holocene sediments from south Yellow Sea: Implications to provenance and climate change. Journal of Earth Science, 2016, 27(5): 751-762 DOI:10.1007/s12583-015-0577-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abanda P. A., Hannigan R. E. Effect of Diagenesis on Trace Element Partitioning in Shales. Chemical Geology, 2006, 230(1–2): 42-59.

[2]

Alexander C. X., DeMaster D. J., Nittrouer C. A. Sediment Accumulation in a Modern Epicontinental- Shelf Setting in the Yellow Sea. Marine Geology, 1991, 98: 51-72.

[3]

Chang F., Li T., Zhuang L., . A Holocene Paleotemperature Record Based on Radiolaria from the Northern Okinawa Trough (East China Sea). Quaternary International, 2008, 183: 115-122.

[4]

Chen F., Li J., Zhang W. Lanzhou Loess Profile and Its Comparison with Deep Sea Sediment and Antarctic Ice Core. Geological Journal, 1991, 24(2): 201-209.

[5]

Chen J., An Z. S., Head J. Variation of Rb/Sr Ratios in the Loess-Paleosol Sequences of Central China during the Last 130 000 Years and Their Implications for Monsoon Paleoclimatology. Quaternary Research, 1999, 51: 215-219.

[6]

Cheng Z., Shi X., Liu D., . The Assemblage Characteristics of Micropaleontology in Core B10 Sediment and the Environment Evolvement in South Yellow Sea. Chinese Science Bulletin, 2001, 46: 45-51.

[7]

Chough S. K., Kim D. C. Dispersal of Fine-Grained Sediments in the Southeastern Yellow Sea: A Steady-State Model. Journal of Sedimentary Petrology, 1981, 51: 721-728.

[8]

Cole J. M., Goldstein S. L., de Menocal P. B., . Contrasting Compositions of Saharan Dust in the Eastern Atlantic Ocean during the Last Deglaciation and African Humid Period. Earth and Planetary Science Letters, 2009, 278: 257-266.

[9]

Colin C., Turpin L., Blamart D., . Evolution of Weathering Patterns in the Indo-Burman Ranges over the Last 280 Kyr: Effects of Sediment Provenance on 87Sr/86Sr Ratios Tracer. Geochemistry Geophysics Geosystems, 2006, 7 Q03007

[10]

Dahl S. O., Nesje A. A New Approach to Calculating Holocene Winter Precipitation by Combining Glacier Equilibrium-Line Altitudes and Pine-Tree Limits: A Case Study from Hardangerjokulen, Central Southern Norway. Holocene, 1996, 6: 381-398.

[11]

Dansgarrd W., Johnsen S. J., Clausen H. B., . Evidence for General Instability of Past Climate from a 250-Kyr Ice-Core Record. Nature, 1993, 364: 218-220.

[12]

Das A., Krishnaswami S. Elemental Geochemistry of River Sediments from the Deccan Traps, India: Implications to Sources of Elements and Their Mobility during Basalt-Water Interaction. Chemical Geology, 2007, 242: 232-254.

[13]

Dasch E. J. Strontium Isotopes in Weathering Profiles, Deep-Sea Sediments, and Sedimentary Rocks. Geochimica et Cosmochimica Acta, 1969, 33: 1521-1552.

[14]

DeMaster D. J., Mckee B. A., Nittrourer C. A., . Rates of Sediment Accumulation and Particle Reworking Based on Radiochemical Measurement from Continental Shelf Deposit in the East China Sea. Continental Shelf Research, 1985, 4: 143-158.

[15]

Eisenhauer A., Meyer H., Rachold V., . Grain Size Separation and Sediment Mixing in Arctic Ocean Sediments: Evidence from the Strontium Isotope Systematic. Chemical Geology, 1999, 158: 173-188.

[16]

Fedo C. M., Nesbitt H. W., Young G. M. Unravelling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance. Geology, 1995, 23: 921-924.

[17]

Gao S., Cheng P., Wang Y. P., . Characteristics of Suspended Sediment Concentrations over the Areas Adjacent to Changjiang River Estuary, the Summer of 1998). Marine Science Bulletin, 2000, 2: 14-23.

[18]

Gasse F., Arnold M., Fontes J. C., . A 13 000-Year Climate Record from Western Tibet. Nature, 1991, 353: 742-745.

[19]

Ge Y., Shi X., Zhu R., . The Magnetic Stratum and Its Environmental Significance of Core EY02-2 in South Yellow Sea. Chinese Science Bulletin, 2005, 50: 2531-2540.

[20]

Goldberg K., Humayun M. The Applicability of the Chemical Index of Alteration as a Paleoclimatic Indicator: An Example from the Permian of the Paraná Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 293: 175-183.

[21]

Goldstein S. L. Decoupled Evolution of Nd and Sr Isotopes in the Continental Crust and the Mantle. Nature, 1988, 336: 733-738.

[22]

Grootes, P. M., Stuiver, M., 1997). Oxygen 18/16 Variability in Greenland Snow and Ice with 103- to 105-Year Time Resolution. Journal of Geophysical Research, C102: 26455–26470

[23]

Hao Q., Guo Z. Spatial Variations of Magnetic Susceptibility of Chinese Loess for the Last 600 Kyr: Implications for Monsoon Evolution. Journal of Geophysical Research, 2005, 110 B12101

[24]

Harrison S. P., Digerfeldt G. European Lakes as Palaeohydrological and Palaeoclimatic Indicators. Quaternary Science Reviews, 1993, 12: 233-248.

[25]

Haug G. H., Hughen K. A., Sigman D. M., . Southward Migration of the Intertropical Convergence Zone through the Holocene. Science, 2001, 293: 1304-1308.

[26]

Hemming S. R. Elias S. A. Terrigenous Sediments. Encyclopedia of Quaternary Science, 2007, 1776-1785.

[27]

Hong Y., Hong B., Lin Q., . Correlation between Indian Ocean Summer Monsoon and North Atlantic Climate during the Holocene. Earth and Planetary Science Letters, 2003, 211(3–4): 371-380.

[28]

Ingram B. L., Sloan D. Strontium Isotopic Composition of Estuarine Sediments as Paleosalinity Paleoclimate Indicator. Science, 1992, 255: 68-72.

[29]

Jia Y., Huang C., Pang J., . Variations of Li/Ba Ratios and Its Paleoclimatic Significance in the Holocence Soil Profile. Quaternary Sciences, 2005, 25(6): 77-83.

[30]

Jin G., Liu D. Mid-Holocene Climate Change in North China, and the Effect on Cultural Development. Chinese Science Bulletin, 2002, 47: 408-413.

[31]

Kim J. M., Kennett J. P. Paleoenvironmental Changes Associated with the Holocene Marine Transgression, Yellow Sea (Hwanghae). Marine Micropaleontology, 1998, 34: 71-89.

[32]

Klaver G. T., van Weering T. C. E. Rare Earth Element Fractionation by Selective Sediment Dispersal in Surface Sediments: The Skagerrak. Marine Geology, 1993, 111: 345-359.

[33]

Kong D., Zong Y., Jia G., . The Development of Late Holocene Coastal Cooling in the Northern South China Sea. Quaternary International, 2014, 349: 300-307.

[34]

Lee H. J., Chough S. K. Sediment Distribution, Dispersal and Budget in the Yellow Sea. Marine Geology, 1989, 87(2–4): 195-205.

[35]

Liu F., Feng Z. A Dramatic Climatic Transition at ~4 000 cal. Yr BP and Its Cultural Responses in Chinese Cultural Domains. The Holocence, 2012, 22: 1181-1197.

[36]

Liu J., Saito Y., Kong X., . Geochemical Characteristics of Sediment as Indicators of Post-Glacial Environmental Changes off the Shandong Peninsula in the Yellow Sea. Continental Shelf Research, 2009, 29: 846-855.

[37]

X., Pang B., Song J., . Chronology of Core D7 Sediment in the West Continental Shelf of the South Yellow Sea. Marine Environmental Sciences, 2014, 33: 550-555.

[38]

Maynard J. B. Chemistry of Modern Soils as a Guide to Interpreting Precambrian Paleosols. The Journal of Geology, 1992, 100: 279-289.

[39]

McLennan S. M. Lipin B. R., McKay G. A. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. Geochemistry and Mineralogy of Rare Earth Elements. Rev. Mineral., 1989, 169-200.

[40]

McLennan S. M. Lipin B. R., McKay G. A. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. Geochemistry and Mineralogy of Rare Earth Elements, Reviews in Mineralogy 21, 1992 Washington, DC: Mineralogical Society of America

[41]

McLennan S. M. Weathering and Global Denudation. The Journal of Geology, 1993, 101: 295-303.

[42]

McLennan S. M., Taylor S. R. Ferguson J., Coleby A. B. Rare Earth Elements in Sedimentary Rocks, Granites and Uranium Deposits of the Pine Creek Geosyncline. Uranium in the Pine Creek Geosyncline IAEA, Vienna, 1980, 175-190.

[43]

McLennan S. M., Taylor S. R., McCulloch M. T., . Geochemical and Nd, Sr Isotopic Composition of Deep-Sea Turbidities: Crustal Evolution and Plate Tectonic Associations. Geochimica et Cosmochimica Acta, 1990, 54(7): 2015-2050.

[44]

Milliman J. D., Beardsley R. C., Yang Z. S., . Modern Yellow River-Derived Muds on the Outer Shelf of the East China Sea: Identification and Potential Transport Mechanisms. Continental Shelf Research, 1985, 4: 175-188.

[45]

Milliman J. D., Shen H. T., Yang Z. S., . Transport and Deposition of River Sediment in the Changjiang Estuary and Adjacent Continental Shelf. Continental Shelf Research, 1985, 4: 37-45.

[46]

Morrill C., Overpeck J. T., Cole J. E., . Holocene Variations in the Asian Monsoon Inferred from the Geochemistry of Lake Sediments in Central Tibet. Quaternary Research, 2006, 65: 232-243.

[47]

Mou B. Elemental Geochemistry. Science Press, Beijing, 1999, 149–152: 177-180.

[48]

Nesbitt H. W., Markovics G. Weathering of Granodioritic Crust, Long-Term Storage of Elements in Weathering Profiles, and Petrogenesis of Siliciclastic Sediments. Geochimica et Cosmochimica Acta, 1997, 61(8): 1653-1670.

[49]

Nesbitt H. W., Markovics G., Price R. C. Chemical Processes Affecting Alkalis and Alkaline Earths during Continental Weathering. Geochimica et Cosmochimica Acta, 1980, 44: 1659-1666.

[50]

Nesbitt H. W., Young G. M. Effect of Chemical Weathering and Sorting on the Petrogenesis of Siliciclastic Sediments, with Implications for Provenance Studies. The Journal of Geology, 1996, 104: 525-542.

[51]

Nesbitt H.W., Young G. M. Early Proterozoic Climate and Plate Motions Inferred from Major Element Chemistry of Lutite. Nature, 1982, 299: 715-717.

[52]

Park S. C., Lee H. H., Han H. S., . Evolution of Late Quaternary Mud Deposits and Recent Sediment Budget in the Southeastern Yellow Sea. Marine Geology, 2000, 170: 271-288.

[53]

Porter S. C., An Z. Correlation between Climate Events in the North Atlantic and China during the Last Glaciation. Nature, 1995, 375: 305-308.

[54]

Qin Y. S., Zhao Y. Y., Chen L. R., . Geology of the Yellow Sea, 1989 Beijing: China Ocean Press

[55]

Ren M. E., Shi Y. L. Sediment Discharge of the Yellow River (China) and Its Effect on the Sedimentation of the Bohai and the Yellow Sea. Continental Shelf Research, 1986, 6: 785-810.

[56]

Retallack G. J. Greenhouse Crises of the Past 300 Million Years. Geological Society of America Bulletin, 2009, 121: 1441-1455.

[57]

Roy P. D., Caballero M., Lozano R., . Geochemistry of Late Quaternary Sediments from Tecocomulco Lake, Central Mexico: Implication to Chemical Weathering and Provenance. Chemie der Erde, 2008, 68: 383-393.

[58]

Schulz H. D., Vonrab U., Erlenkeuser H. Correlation between Arabian Sea and Greenland Climate Oscillation of the Past 110 000 years. Nature, 1998, 3931: 54-57.

[59]

Selvaraj K., Chen C. T. A., Lou J. Y. Holocene East Asian Monsoon Variability: Links to Solar and Tropical Pacific Forcing. Geophysical Research Letters, 2007, 34 L01703

[60]

Sheldon N. D., Retallack G. J., Tanaka S. Geochemical Climofunctions from North American Soils and Application to Paleosols across the Eocene- Oligocene Boundary in Oregon. Journal of Geology, 2002, 110: 687-696.

[61]

Shi Y., Kong Z., Wang S., . The Climatic Fluctuation and Significate Affairs in Megathermal Episode in China. Science in China (Ser. B), 1992, 22(12): 1300-1308.

[62]

Shi Y., Kong Z., Wang S., . Mid-Holocene Climates and Environments in China. Global and Planetary Change, 1993, 7: 219-233.

[63]

Shi Y., Yao T., Yang B. Decadal Climatic Variations Recorded in Guliya Ice Core and Comparison with the Historical Documentary Data from East China during the Last 2000 Years. Science in China Series D: Earth Sciences, 1999, 42: 91-100.

[64]

Sicre M. A., Yiou P. E., ksson J., . A 4 500-Year Reconstruction of Sea Surface Temperature Variability at Decadal Time-Scales off North Iceland. Quaternary Science Reviews, 2008, 27: 2041-2047.

[65]

Stoll H. M., Schrag D. P. Coccolith Sr/Ca as a New Indicator of Coccolithophorid Calcification and Growth Rate. Geochemistry Geophysics Geosystems, 2000, 1: 10-18.

[66]

Stoll H. M., Schrag D. P. Effects of Quaternary Sea Level Cycles on Strontium in Seawater. Geochimica et Cosmochimica Acta, 1998, 62: 1107-1118.

[67]

Stott L., Cannariato K., Thunell R., . Decline of Surface Temperature and Salinity in the Western Tropical Pacific Ocean in the Holocene Epoch. Nature, 2004, 431: 56-59.

[68]

Stuiver M., Braziunas T. F., Grootes P. M., . Is There Evidence for Solar Forcing of Climate in the GISP2 Oxygen Isotope Record?. Quaternary Research, 1997, 48: 259-266.

[69]

Stuiver M., Grootes P. M., Braziunas T. F. The GISP2 d18O Climate Record of the Past 16 500 Years and the Role of the Sun, Ocean and Volcanoes. Quaternary Research, 1995, 44: 341-354.

[70]

Vital H., Stattegger K., Garbe-Schonberg C. D. Composition and Trace-Element Geochemistry of Detrital Clay and Heavy-Mineral Suites of the Lowermost Amazon River: A Provenance Study. Journal of Sedimentary Research Section, 1999, 69: 563-575.

[71]

Wang B., Lin H. Rainy Season of the Asian-Pacific Summer Monsoon. Journal of Climate, 2002, 15: 386-396.

[72]

Wang S., Zhang G., Zhang J., . Geochemical Studies on Rb and Sr in the Mud on the Inner Shelf of the East China Sea and Their Palaeoclimatic Significance. Science Technology Review, 2007, 25(3): 22-27.

[73]

Wang W., Feng Z., Lee X., . Holocene Abrupt Climate Shifts Recorded in Gun Nuur Lake Core, Northern Mongolia. Chinese Science Bulletin, 2004, 49(5): 520-526.

[74]

Wang Y., Chen H., Edwards R. L., . The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate. Science, 2005, 308: 854-857.

[75]

Xiang R., Yang Z., Saito Y., . Paleoenvironmental Changes during the Last 8 400 Years in the Southern Yellow Sea: Benthic Foraminiferal and Stable Isotopic Evidence. Marine Micropaleontology, 2008, 67: 104-119.

[76]

Xiao J., Nakamura T., Lu H., . Holocene Climate Changes over the Desert/Loess Transition of North-Central China. Earth and Planetary Science Letters, 2002, 197: 11-18.

[77]

Xiong S., Ding Z., Zhu Y., . A ~6 Ma Chemical Weathering History, the Grain Size Dependence of Chemical Weathering Intensity, and Its Implications for Provenance Change of the Chinese Loesse Red Clay Deposit. Quaternary Science Reviews, 2010, 29: 1911-1922.

[78]

Yan M., Chi Q., Gu T., . Chemical Compositions of Upper Continental Crust in East China. Science in China Series D: Earth Sciences, 1997, 27(3): 193-199.

[79]

Yang S. Y., Li C. X., Yang D. Y., . Chemical Weathering of Loess Deposits in the Lower Changjiang Valley, China, and Paleoclimatic Implications. Quaternary International, 2004, 117: 27-34.

[80]

Yang S. Y., Lim D. I., Jung H. S., . Geochemical Composition and Provenance Discrimination of Coastal Sediments around Cheju is Land in the Southern Yellow Sea. Marine Geology, 2004, 206: 41-53.

[81]

Yang S., Li C. REE Geochemistry and Tracing Application in the Yangtze River and the Yellow River Sediments. Geochimica, 1999, 28(4): 374-380.

[82]

Yang S., Li C. Characteristic Element Compositions of the Yangtze and the Yellow River Sediments and Their Geological Background. Marine Geology Quaternary Geology, 1999, 19(2): 19-26.

[83]

Yang S., Li C., Jun H., . Geochemistry of Trace Elements in Chinese and Korean River Sediments. Marine Geology Quaternary Geology, 2003, 23(2): 19-24.

[84]

Yang S., Youn J. S. Geochemical Compositions and Provenance Discrimination of the Central South Yellow Sea Sediments. Marine Geology, 2007, 243: 229-241.

[85]

Yin J., Zheng Y., Liu Y., . Statistic Analysis on the 14C Age of Humic Acid and Humin in Paleosol. Seismology and Geology, 2007, 29: 381-389.

[86]

Youn J., Kim T. J. Geochemical Composition and Provenance of Muddy Shelf Deposits in the East China Sea. Quaternary International, 2011, 230: 3-12.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/