Sulfur- and lead-isotope geochemistry of the Balugou Cu-Pb-Zn skarn deposit in the Wulonggou area in the eastern Kunlun Orogen, NW China

Qingfeng Ding, Wei Yan, Benlong Zhang

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (5) : 740-750.

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (5) : 740-750. DOI: 10.1007/s12583-015-0574-3
Article

Sulfur- and lead-isotope geochemistry of the Balugou Cu-Pb-Zn skarn deposit in the Wulonggou area in the eastern Kunlun Orogen, NW China

Author information +
History +

Abstract

The small-scale Balugou Cu-Pb-Zn skarn deposit (45 298 tonnages of ore at 0.1% to 3.99% Cu, 0.20% to 0.43% Pb and 0.76% to 10.92% Zn) is located in the Wulonggou area in the eastern Kunlun orogen, NW China. Ore deposition is spatially and temporally related with the pre-collisional Anisian Balugou granites (~244 Ma). The mineralization hosted by the contact between marble beds within the Paleo-Proterozoic Jinshuikou Group and Balugou granites, was structurally and lithologically controlled. The mineralogy of the Balugou deposit includes an early simple skarn mineral gangue (epidote with little diopside) and a late complicated quartz sulfide assemblage (pyrite, pyrrhotite, chalcopyrite, sphalerite, galena, bornite, quartz, carbonate and chlorite). The δ34S values of eighteen sulfides range from -2.1‰ to +2.8 ‰, with an average of +0.07‰, and the calculated δ34SH2S values for H2S in hydrothermal fluids range from -3.2‰ to +2.4‰, with an average of +0.03‰, suggesting a relatively homogeneous magmatic (±mantle) source, with sulfur produced directly by the Balugou granites. The sixteen sulfides have 206Pb/204Pb ratios from 18.367 4 to 18.384 1, 207Pb/204Pb ratios from 15.634 6 to 15.641 5, and 208Pb/204Pb ratios from 38.455 5 to 38.485 0, which are close to those of K-feldspars from the Balugou granites, but are far away from age-corrected lead isotopic ratios of six wall-rock samples. So it was considered that the Pb sources of sulfides must be almost derived from the Balugou granites rather than the older wall-rocks. Collectively, it’s suggested that the Balugou Cu-Pb-Zn deposit belongs to skarn deposit, and the sulfur and lead deposited in it were leached from the Anisian Balugou granites.

Keywords

Balugou skarn deposit / Wulonggou area / eastern Kunlun orogen / sulfur isotope / lead isotope

Cite this article

Download citation ▾
Qingfeng Ding, Wei Yan, Benlong Zhang. Sulfur- and lead-isotope geochemistry of the Balugou Cu-Pb-Zn skarn deposit in the Wulonggou area in the eastern Kunlun Orogen, NW China. Journal of Earth Science, 2016, 27(5): 740‒750 https://doi.org/10.1007/s12583-015-0574-3

References

Ault K. M. Sulfur and Lead Isotope Study of the EL Mochito Zn-Pb-Ag. Economic Geology, 2004, 99: 1223-1231.
CrossRef Google scholar
Belshaw N. S., Freedman A., O’Nions R. K., . A New Variable Dispersion Double-Focusing Plasma Mass Spectrometer with Performance Illustrated for Pb Isotopes. International Journal of Mass Spectrometry, 1998, 181: 51-58.
CrossRef Google scholar
Bian Q. T., Li D. H., Pospelov I., . Age, Geochemistry and Tectonic Setting of Buqingshan Ophiolites, North Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences, 2004, 23: 577-596.
CrossRef Google scholar
Bian Q. T., Zhao D. S., Ye Z. R., . A Preliminary Study of the Kunlun-Qilian-Qinling Suture System. Acta Geoscientia Sinica, 2002, 23(6): 501-508.
Chen N. S., Sun M., Wang Q. Y., . EMP Chemical Ages of Monazites from Central Zone of the Eastern Kunlun Orogen, Records of Multi-Tectonometamorphic Events. Chinese Science Bulletin, 2007, 52(16): 2252-2263.
CrossRef Google scholar
Ding Q. F., Jiang S. Y., Sun F. Y. Zircon U-Pb Geochronology, Geochemical and Sr-Nd-Hf Isotopic Compositions of the Triassic Granite and Diorite Dikes from the Wulonggou Mining Area in the Eastern Kunlun Orogen, NWChina: Petrogenesis and Tectonic Implications. Lithos, 2014, 205: 266-283.
CrossRef Google scholar
FIQGS First Institute of Qinghai Geology Survey Exploration Report for Hongqigou-Shenshuitan Gold Deposits in Wulonggou Area in Dulan County in Qinghai Province, 2010 Ping’an: Report from First Institute of Qinghai Geology Survey, 1-161.
Flowerdew M. J., Tyrrell S., Riley T. R., . Distinguishing East and West Antarctic Sediment Sources Using the Pb Isotope Composition of Detrital K-Feldspar. Chemical Geology, 2012, 292: 88-102.
CrossRef Google scholar
Harrowfield M. J., Wilson J. L. Indosinian Deformation of the Songpan Garze Fold Belt, Northeast Tibetan Plateau. Journal of Structural Geology, 2005, 27: 101-117.
CrossRef Google scholar
He S. Y., Shu S. L. Ore-Prospecting Symbols and Metallogenic Geological Characteristics of Heishishan Cu-Polymetal deposit. Qinghai Science and Technology, 2006, 13(1): 39-44.
He X. X., Zhu X. K., Yang C., . High-Precision Analysis of Pb Isotope Ratios Using MC-ICP-MS. Acta Geoscientia Sinica, 2005, 26: 19-22.
Hoefs J. Stable Isotope Geochemistry, 2009, 285.
Ishihara S., Jin M. S., Sasaki A. Source Diversity of Ore Sulfur from Mesozoic–Cenozoic Mineral Deposits in the Korean Peninsula Region. Resource Geology, 2000, 50: 203-212.
CrossRef Google scholar
Ishihara S., Kajiwara Y., Jin M. S. Possible Carbonate Origin of Ore Sulfur from Geumseong Mo Deposit, South Korea. Resource Geology, 2002, 52: 279-282.
CrossRef Google scholar
Jiang C. F., Yang J. S., Feng B. G., . Opening Closing Tectonics of Kunlun Shan. Geological Publishing House, Beijing. Geological Memoirs, Series, 1992, 5(12): 1-217.
Kamvong T., Zaw K. The Origin and Evolution of Skarn-Forming Fluids from the Phu Lon Deposit, Northern Loei Fold Belt, Thailand: Evidence from Fluid Inclusion and Sulfur Isotope Studies. Journal of Asian Earth Sciences, 2009, 34: 624-633.
CrossRef Google scholar
Li D. B., Wu Q. Geological Characteristics and Prospecting Potential of Heishishan Cu-Polymetallic Deposit in Qinghai Province. Journal of Hefei University of Technology, 2013, 36(1): 99-103.
Li Y. J., Jia C. Z., Hao J., . Radiolarian Fauna Found from Tieshidas Group in East Kunlun. Chinese Science Bulletin, 2000, 45(10): 943-946.
CrossRef Google scholar
Lin J., Liu Y. S., Chen H. H., . Review of High-Precision Sr Isotope Analyses of Low-Sr Geological Samples. Journal of Earth Science, 2015, 26(5): 763-774.
CrossRef Google scholar
Liu, Y. J., Genser, J., Neubauer, F., et al., 2005. Mountains, NWChina, and Their Tectonic Implications. Tectonophysics, 398: 199–224. doi: 10.1016/j.tecto. 2005.02.007
Lu Y. F. GeoKit—A Geochemical Toolkit for Microsoft Excel. Geochimica, 2004, 33(5): 459-464.
McNaughton N. J., Groves D. I. A Review of Pb-Isotope Constraints on the Genesis of Lode-Gold Deposits in the Yilgarn Craton, Western Australia. J. R. Soc. Western Australia, 1996, 79: 123-129.
Mo X. X., Yuan W. M. Fission-Track Thermochronology Evidence on Wulonggou Gold Mineralization, Eastern Kunlun Mountains, Northern Qinghai-Tibet Plateau. Geochimica et Cosmochimica Acta, 2007, 71: 676-676.
Mock C., Arnaud N. O., Cantagrel J. M. An Early Unroofing in Northeastern Tibet? Constraints from 40Ar/39Ar Thermochronology on Granitoids from the Eastern Kunlun Range (Qinghai, NW China). Earth and Planetary Science Letters, 1999, 171: 107-122.
CrossRef Google scholar
Ohmoto H., . Valley J. H., Taylor H. P., O’Neil J. P., . Stable Isotope Geochemistry of Ore Deposits. Stable Isotope in High Temperature Geological Processes, 1986, 491-559.
Ohmoto H., Rye R. O. Barnes H. L. Isotopes of Sulfur and Carbon. Geochemistry of Hydrothermal Ore Deposits, 1979 New York: John Wiley, 509-567.
Ohmoto H., Goldhaber M. B. Barnes H. L. Sulfur and Carbon Isotopes. Geochemistry of Hydrothermal Ore Deposits, 1997, 517-611.
Pan G. T., Ding J., Wang L. Q., . Important New Progress of Regional Geological Investigation in the Tibetan Plateau. Geological Bulletin of China, 2002, 21(11): 787-793.
Pan Y. S., Zhou W. M., Xu R. H., . Geological Characteristics and Evolution of the Kunlun Mountains Region During the Early Paleozoic. Science in China Series D: Earth Sciences, 1996, 39(4): 337-347.
Qian Z. Z., Hu Z. G., Liu J. Q. Northwest Ductile Shear Zones and Their Tectonic Setting in the East of Kunlun Mountains. Journal of Chengdu University of Technology, 1998, 25(2): 201-205.
Reid A. J., Wilson C. J. L., Liu S. Structural Evidence for the Permo-Triassic Tectonic Evolution of the Yidun Arc, Eastern Tibetan Plateau. Journal of Structural Geology, 2005, 27: 119-137.
CrossRef Google scholar
Robinson B. W., Kasakabe M. Quantitative Preparation of Sulfur Dioxide for 34S/32S Analyses from Sulphides by Combustion with Cuprous Oxide. Analytial Chemistry, 1975, 47: 1179-1181.
CrossRef Google scholar
Roger F., Arnaud N., Gilder S., . Geochronological and Geochemical Constraints on Mesozoic Suturing in East Central Tibet (Abstract). Tectonics, 2003, 22 1037
CrossRef Google scholar
SenGör A. M. C. Tectonics of the Tethysides, Orogenic Collage Development in a Collisional Setting. Annual Review of Earth and Planetary Sciences, 1987, 15: 213-244.
CrossRef Google scholar
Shu Q. H., Lai Y., Sun Y., . Ore Genesis and Hydrothermal Evolution of the Baiyinnuo’er Zinc-Lead Skarn Deposit, Northeast China: Evidence from Isotopes (S, Pb) and Fluid Inclusions. Economic Geology, 2013, 108: 835-860.
CrossRef Google scholar
Stacey J. S., Kramers J. D. Approximation of the Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth and Planetary Science Letters, 1975, 26: 207-221.
CrossRef Google scholar
Xu, Q., Pan, G. T., Jiang, X. S., 2003). Songpan-Ganzi Belt, Forearc Accretion or Backarc Collapsing? Journal of Mineralogy and Petrology, 23(2): 27–31 (in Chinese with English Abstract)
Xu Z. Q., Yang J. S., Li H. B., . Terrane Amalgamation, Collision and Uplift in the Qinghai-Tibet Plateau, 2007 Beijing: Geological Publishing House, 1-458.
Yang J. S., Robinson T., Jiang C. F., . Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications. Tectonophysics, 1996, 258: 215-231.
CrossRef Google scholar
Yang J. S., Shi R. D., Wu C. L., . Dur’ngoi Ophiolite in East Kunlun, Northeast Tibetan Plateau: Evidence for Paleo-Tethyan Suture in Northwest China. Journal of Earth Science, 2009, 20: 303-331.
CrossRef Google scholar
Yang J. S., Wu C. L., Shi R. D., . Miocene and Pleistocene Shoshonitic Volcanic Rocks in the Jingyuhu Area, North of the Qinghai-Tibet Plateau. Acta Petrologica Sinica, 2002, 18(2): 161-176.
Yin A., Harrison T. M. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
CrossRef Google scholar
Yin H. F., Zhang K. X. Characteristics of the Eastern Kunlun Orogenic Belt. Earth Science—Journal of China University of Geosciences, 1997, 22(4): 339-342.
Yu X. H., Mo X. X., Yuan W. M., . Geological Characteristics and Genesis of Wulonggou Gold Deposit and Evaluation of Gold Metallogenic Potential in East Kunlun. Earth Science—Journal of China University of Geosciences, 1999, 10(1): 62-66.
Yuan C., Sun M., Xiao W. J., . Garnet-Bearing Tonalitic Porphyry from East Kunlun, Northeast Tibetan Plateau, Implications for Adakite and Magmas from the MASH Zone. International Journal of Earth Sciences, 2009, 98: 1489-1510.
CrossRef Google scholar
Yuan C., Zhou M. F., Sun M., . Triassic Granitoids in the Eastern Songpan Ganzi Fold Belt, SW China, Magmatic Response to Geodynamics of the Deep Lithosphere. Earth and Planetary Science Letters, 2010, 290: 481-491.
CrossRef Google scholar
Zartman R. E., Doe B. R. Plumbotectonics—The model. Tectonophysics, 1981, 75: 135-162.
CrossRef Google scholar
Zhang L. G. Lead Isotopic Compositions of Feldspar and Ore and Their Geologic Significance. Mineral Deposits, 1988, 7(2): 55-64.
Zhao K. D., Jiang S. Y., Ni P., . Sulfur, Lead and Helium Isotopic Compositions of Sulfide Minerals from the Dachang Sn-Polymetallic Ore District in South China Implication for Ore Genesis. Mineralogy and Petrology, 2007, 89: 251-273.
CrossRef Google scholar
Zheng J. K. Regional Tectonic Evolution of East Kunlun. Journal of Qinghai Geology, 1992, 1: 15-25.

Accesses

Citations

Detail

Sections
Recommended

/