Determining the source time function using the modified matrix method

Anastasiia Pavlova

Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (6) : 1054 -1059.

PDF
Journal of Earth Science ›› 2016, Vol. 27 ›› Issue (6) : 1054 -1059. DOI: 10.1007/s12583-015-0573-4
Special Column on Tectonics of Turkey and Iran and Comparison with Other Tethyan Domains

Determining the source time function using the modified matrix method

Author information +
History +
PDF

Abstract

The modified matrix method of construction of wavefield on the free surface of an anisotropic medium is proposed. The earthquake source represented by a randomly oriented force or a seismic moment tensor is placed on an arbitrary boundary of a layered anisotropic medium. The theory of the matrix propagator in a homogeneous anisotropic medium by introducing a “wave propagator” is presented. It is shown that the matrix propagator can be represented by a “wave propagator” in each layer for anisotropic layered medium. The matrix propagator P(z, z 0=0) acts on the free surface of the layered medium and generates stress-displacement vector at depth z. The displacement field on the free surface of an anisotropic medium is obtained from the received system of equations considering the radiation condition and that the free surface is stressless. The new method determining source time function in anisotropic medium for three different types of seismic source is validated.

Keywords

matrix method / seismic tensor / synthetic seismograms

Cite this article

Download citation ▾
Anastasiia Pavlova. Determining the source time function using the modified matrix method. Journal of Earth Science, 2016, 27(6): 1054-1059 DOI:10.1007/s12583-015-0573-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aki K., Richards P. G. Quantitative Seismology, 2002

[2]

Behrens E. Sound Propagation in Lamellar Composite Materials and Averaged Elastic Constants. The Journal of the Acoustical Society of America, 1967, 42(2): 168-191.

[3]

Buchen P. W., Ben-Hador R. Free-Mode Surface-Wave Computations. Geophysical Journal International, 1996, 124(3): 869-887.

[4]

Cerveny V. Seismic Ray Theory, 2001

[5]

Chapman C. H. The Turning Point of Elastodynamic Waves. Geophysical Journal International, 1974, 39(3): 613-621.

[6]

Fryer G. J., Frazer L. N. Seismic Waves in Stratified Anisotropic Media. Geophysical Journal International, 1984, 78(3): 691-710.

[7]

Fryer G. J., Frazer L. N. Seismic Waves in Stratified Anisotropic Media—II. Elastodynamic Eigensolutions for Some Anisotropic Systems. Geophysical Journal International, 1987, 91(1): 73-101.

[8]

Haskell N. A. The Dispersion of Waves in Multilayered Media. Bull. Seism. Soc. Am., 1953, 43(1): 17-34.

[9]

Helbig K., Treitel S. Wave Fields in Real Media: Wave Proragation in Anisotropic, Anelastic and Porous Media, 2001

[10]

Malytskyy D., Pavlova A., Hrytsai O., . Determining the Focal Mechanism of an Earthquake in the Transcarpathian Region of Ukraine. Visnyk KNU, Geology, 2013, 4(63): 38-44.

[11]

Stephen R. A. Seismic Anisotropy Observed in Upper Oceanic Crust. Geophysical Research Letters, 1981, 8(8): 865-868.

[12]

Thomson W. T. Transmission of Elastic Waves through a Stratified Solid Medium. Journal of Applied Physics, 1950, 21 2 89

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/