Combined Moho parameters determination using CRUST1.0 and Vening Meinesz-Moritz model

Majid Abrehdary , Lars E. Sjöberg , Mohammad Bagherbandi

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (4) : 607 -616.

PDF
Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (4) : 607 -616. DOI: 10.1007/s12583-015-0571-6
Article

Combined Moho parameters determination using CRUST1.0 and Vening Meinesz-Moritz model

Author information +
History +
PDF

Abstract

According to Vening Meinesz-Moritz (VMM) global inverse isostatic problem, either the Moho density contrast (crust-mantle density contrast) or the Moho geometry can be estimated by solving a non-linear Fredholm integral equation of the first kind. Here solutions to the two Moho parameters are presented by combining the global geopotential model (GOCO-03S), topography (DTM2006) and a seismic crust model, the latter being the recent digital global crustal model (CRUST1.0) with a resolution of 1º×1º. The numerical results show that the estimated Moho density contrast varies from 21 to 637 kg/m3, with a global average of 321 kg/m3, and the estimated Moho depth varies from 6 to 86 km with a global average of 24 km. Comparing the Moho density contrasts estimated using our leastsquares method and those derived by the CRUST1.0, CRUST2.0, and PREM models shows that our estimate agrees fairly well with CRUST1.0 model and rather poor with other models. The estimated Moho depths by our least-squares method and the CRUST1.0 model agree to 4.8 km in RMS and with the GEMMA1.0 based model to 6.3 km.

Keywords

CRUST1.0 / density contrast / isostasy / Moho / sediment thickness

Cite this article

Download citation ▾
Majid Abrehdary, Lars E. Sjöberg, Mohammad Bagherbandi. Combined Moho parameters determination using CRUST1.0 and Vening Meinesz-Moritz model. Journal of Earth Science, 2015, 26(4): 607-616 DOI:10.1007/s12583-015-0571-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amante C., Eakins B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA, Technical Memorandum, NESDIS, NGDC-24, 2009, 19.

[2]

Bagherbandi M. Royal of Institute of Technology, Stockholm, 2011, 65-72.

[3]

Bagherbandi M., Sjöberg L. E. Non-Isostatic Effects on Crustal Thickness: A Study Using CRUST2.0 in Fennoscandia. Physics of the Earth and Planetary Interiors, 2012, 200/201: 37-44.

[4]

Bagherbandi M., Sjöberg L. E. Improving Gravimetric-Isostatic Models of Crustal Depth by Correcting for Non-Isostatic Effects and Using CRUST2.0. Earth-Science Reviews, 2013, 117: 29-39.

[5]

Bagherbandi M., Tenzer R., Sjöberg L. E., . Improved Global Crustal Thickness Modeling Based on the VMM Isostatic Model and Non-Isostatic Gravity Correction. Journal of Geodynamics, 2013, 66: 25-37.

[6]

Bassin C., Laske G., Masters T. G. The Current Limits of Resolution for Surface Wave Tomography in North America. EOS Trans AGU, 2000, 81 F897.

[7]

Bouman J., Ebbing J., Meekes S., . GOCE Gravity Gradient Data for Lithospheric Modeling. International Journal of Applied Earth Observation and Geoinformation, 2015, 35: 16-30.

[8]

Cadek O., Martinec Z. Spherical Harmonic Expansion of the Earth’s Crustal Thickness up to Degree and Order 30. Studia Geophysica et Geodaetica, 1991, 35(3): 151-165.

[9]

Dziewonski A. M., Anderson D. L. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 1981, 25(4): 297-356.

[10]

Heiskanen W. A., Moritz H. Physical Geodesy. W. H. Freeman, New York., 1967, 130-133.

[11]

Laske G., Masters G., Reif C. A New Global Crustal Model at 2×2 Degrees (CRUST2.0), 2000

[12]

Laske G., Masters G., Ma Z., . A New Global Crustal Model at 1×1 Degrees (CRUST1.0), 2013

[13]

Lebedev S., Adam J. M. C., Meier T. Mapping the Moho with Seismic Surface Waves: A Review, Resolution Analysis, and Recommended Inversion Strategies. Tectonophysics, 2013, 609: 377-394.

[14]

Mayer-Guerr T., Rieser D., Höck E., . The New Combined Satellite only Model GOCO03s, 2012

[15]

Meier U., Curtis A., Trampert J. Global Crustal Thickness from Neural Network Inversion of Surface Wave Data. Geophysical Journal International, 2007, 169(2): 706-722.

[16]

Moritz H. The Figure of the Earth. H. Wichmann, Karlsruhe, 1990

[17]

Moritz H. Geodetic Reference System 1980. J. Geod., 2000, 74: 128-162.

[18]

Pasyanos M., Masters G., Laske G., . Litho1.0—An Updated Crust and Lithospheric Model of the Earth Developed Using Multiple Data Constraints. Fall Meeting, AGU, San Francisco. Dec., 2012, 3-7.

[19]

Pavlis N. A., Simon A. H., Kenyon S. C., . The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research, 2012, 117 B04406

[20]

Pavlis N. K., Saleh J. Error Propagation with Geographic Specificity for very High Degree Geopotential Models. International Association of Geodesy Symposia, 2005, 149-154.

[21]

Reguzzoni M., Sampietro D. GEMMA: An Earth Crustal Model Based on GOCE Satellite Data. International Journal of Applied Earth Observation and Geoinformation, 2015, 35: 31-43.

[22]

Reguzzoni M., Sampietro D., Sanso F. Global Moho from the Combination of the CRUST2.0 Model and GOCE Data. Geophysical Journal International, 2013, 195(1): 222-237.

[23]

Sampietro D., Reguzzoni M., Braitenberg C. The GOCE Estimated Moho beneath the Tibetan Plateau and Himalaya. International Association of Geodesy Symposia, 2013, 22: 391-397.

[24]

Shapiro N. M., Ritzwoller M. H. Monte-Carlo Inversion for a Global Shear-Velocity Model of the Crust and Upper Mantle. Geophysical Journal International, 2002, 151(1): 88-105.

[25]

Sjöberg L. E. Solving Vening Meinesz-Moritz Inverse Problem in Isostasy. Geophysical Journal International, 2009, 179(3): 1527-1536.

[26]

Sjöberg L., Bagherbandi M. A Method of Estimating the Moho Density Contrast with a Tentative Application of EGM08 and CRUST2.0. Acta Geophysica, 2011, 59(3): 502-525.

[27]

Tenzer R., Chen W., Tsoulis D., . Analysis of the Refined CRUST1.0 Crustal Model and Its Gravity Field. Surveys in Geophysics, 2014, 36(1): 139-165.

[28]

van der Pluijm B. A., Marshak S. Earth Structure: An Introduction to Structural Geology and Tectonics, 2004

[29]

Vening Meinesz F. A. Une Nouvelle Méthode Pour La Réduction Isostatique Régionale de L’intensité de La Pesanteur. Bulletin Géodésique, 1931, 29(1): 33-51.

[30]

Watts A. B. Isostasy and Flexure of the Lithosphere. Cambridge, New York, 2001, 458.

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/