Recovering period of postseismic fluid pressure in fault valve

Shuangxi Zhang, Chen Zhang, Yu Zhang, Chaoyu Zhang, Lingxi Liu, Mengkui Li

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (4) : 530-536.

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (4) : 530-536. DOI: 10.1007/s12583-015-0561-8
Article

Recovering period of postseismic fluid pressure in fault valve

Author information +
History +

Abstract

The present study aims to reveal the recovering period of the postseismic fluid pressure in fault zone, offering an insight into earthquake recurrence. Numerical modeling is performed based on a 2D simple layered fault-valve model to simulate the fluid activities within the earthquake fault. In order to demonstrate the features of postseismic fluid pressure in natural state, the interference of tectonic movements is not considered. The recovering period of postseismic fluid pressure includes a suddenchanging period and a much longer fluctuating period. Modeling results show that fault permeability and porosity are sensitive parameters and reversely proportional to the recovering period of the fluid pressure in earthquake fault zone. When the permeability reduces from 10-15 to 10-18 m2, the recovering period increases from 400 to 2 000 yrs, correspondently. The upper and lower fluid pressures are separated by the valve seal, causing their fluctuations in opposite tendencies.

Keywords

recovering period / fluid pressure / fault valve / numerical modeling / thermal anomaly

Cite this article

Download citation ▾
Shuangxi Zhang, Chen Zhang, Yu Zhang, Chaoyu Zhang, Lingxi Liu, Mengkui Li. Recovering period of postseismic fluid pressure in fault valve. Journal of Earth Science, 2015, 26(4): 530‒536 https://doi.org/10.1007/s12583-015-0561-8

References

Artemieva I. M., Mooney W. D. Thermal Thickness and Evolution of Precambrian Lithosphere: A Global Study. Journal of Geophysical Research, 2001, 106(B8): 6387-1641.
CrossRef Google scholar
Bai D. H., Unsworth M. J., Meju M. A., . Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging. Nature Geoscience, 2010, 3: 358-362.
CrossRef Google scholar
Boullier A. M., Robert F. Palaeoseismic Events Recorded in Archaean Gold-Quartz Vein Networks, Val d’Or, Abitibi, Quebec, Canada. Journal of Structural Geology, 1992, 14: 161-179.
CrossRef Google scholar
Brace W. F. Permeability of Crystalline Rocks: New in Situ Measurements. Journal of Geophysical Research, 1984, 89: 4327-4330.
CrossRef Google scholar
Byerlee J. D. Friction of Rocks. Pure and Applied Geophysics, 1978, 116: 615-626.
CrossRef Google scholar
Chen J. Y., Yang X. S., Dang J. X., . Internal Structure and Permeability of Wenchuan Earthquake Fault. Chinese Journal of Geophysics, 2011, 54(7): 1805-1816.
Chester F. M., Evans J. P., Biegel R. L. Internal Structure and Weakening Mechanisms of the San-Andreas Fault. Journal of Geophysical Research, 1993, 771-786.
Dang J. X., Zhou Y. S., Han L., . X-Ray Diffraction Analysis Result of Co-Seismic Fault Gouge in Carbon Mudstone at Outcrops of Bajiaomiao and Shenxigou in Hongkou. Seismology and Geology, 2012, 34: 17-27.
Doglioni C., Barba S., Carminati E., . Role of the Brittle-Ductile Transition on Fault Activation. Physics of the Earth and Planetary Interiors, 2011, 184: 160-171.
CrossRef Google scholar
Doglioni C., Barba S., Carminati E., . Fault on-off Versus Coseismic Fluids Reaction. Geoscience Frontiers, 2013, 5: 767-780.
CrossRef Google scholar
Du F., Wen X. Z., Zhang P. Z., . Interseismic Deformation across the Longmenshan Fault Zone before the 2008 M 8.0 Wenchuan Earthquake. Chinese Journal of Geophysics, 2009, 52(11): 2729-2738.
Evans J. P., Forster C. B., Goddard J. V. Permeability of Fault-Related Rocks, and Implications for Hydraulic Structure of Fault Zones. Journal of Structural Geology, 1997, 19: 1393-1404.
CrossRef Google scholar
Fu B. H., Wang P., Kong P., . Preliminary Study of Coseismic Fault Gouge Occurred in the Slip Zone of the Wenchuan Ms 8.0 Earthquake and Its Tectonic Implications. Acta Petrologica Sinica, 2008, 24(10): 2237-2243.
Fulton P. M., Harris R. N., Saffer D. M., . Does Hydrologic Circulation Mask Frictional Heat on Faults after Large Earthquakes?. Journal of Geophysical Research, 2010, 115 B09402
CrossRef Google scholar
Gratier J. P., Favreau P., Renard F. Modeling Fluid Transfer along California Faults when Integrating Pressure Solution Crack Sealing and Compaction Processes. Journal of Geophysical Research, 2003, 108 B2 2104
CrossRef Google scholar
Hardebeck J. L., Hauksson E. Role of Fluids in Faulting Inferred from Stress Field Signatures. Science, 1999, 285(5425): 236-239.
CrossRef Google scholar
Healy J. H., Rubey W. W., Griggs D. T., . The Denver Earthquakes. Science, 1968, 161: 1301-1310.
CrossRef Google scholar
Holcomb D. J., Olsson W. A. Compaction Localization and Fluid Flow. Journal of Geophysical Research, 2003
Lachenbruch A. H. Crustal Temperature and Heat Production: Implications of the Linear Heat Flow Relation. Journal of Geophysical Research, 1970, 75: 3291-3300.
CrossRef Google scholar
Lai G. J., Huang F. Q., Ge H. K. Apparent Permeability Variation of Underground Water Aquifer Induced by an Earthquake: A Case of the Zhouzhi Well and the 2008 Wenchuan Earthquake. Earthquake Science, 2011, 24: 437-445.
CrossRef Google scholar
Marone C., Raleigh C. B., Scholz C. H. Frictional Behavior and Constitutive Modeling of Simulated Fault Gouge. Journal of Geophysical Research, 1990, 95: 7007-7025.
CrossRef Google scholar
Miller S. A., Nur A., Olgaard D. L. Earthquakes as a Coupled Shear Stress-High Pore Pressure Dynamical System. Geophysical Research Letters, 1996, 23(2): 197-200.
CrossRef Google scholar
Miller S. A. Inferring Fault Strength from Earthquake Rupture Properties and the Tectonic Implications of High Pore Pressure Faulting. Earth Planets Space, 2002, 54: 1173-1179.
CrossRef Google scholar
Miller S. A., Collettini C., Chiaraluce L., . Aftershocks Driven by a High-Pressure CO2 Source at Depth. Nature, 2004, 427: 724-727.
CrossRef Google scholar
Morrow C. A., Lockner D. A., Hickman S., . Effects of Lithology and Depth on the Permeability of Core Samples form the Kola and KTB Drill Holes. Journal of Geophysical Research, 1994, 99: 7263-7274.
CrossRef Google scholar
Nabelek J., Suarez G. The 1983 Goodnow Earthquake in the Central Adirondacks, New York: Rupture of a Simple, Circular Crack. Bulletin of the Seismological Society of America, 1989, 79: 1762-1777.
Nur A., Booker J. R. Science, 1972, 175(4024): 885-887.
CrossRef Google scholar
Peach C. J., Spiers C. J. Influence of Crystal Plastic Deformation on Dilatancy and Permeability Development in Synthetic Salt Rock. Tectonophysics, 1996, 256(1): 101-128.
CrossRef Google scholar
Poty B., Stadler H. A., Weisbrod A. M. Fluid Inclusions Studies in Quartz from Fissures of Western and Central Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 1974, 54: 717-752.
Pulinets S. A., Ouzounov D., Karelin A. V., . The Physical Nature of Thermal Anomalies Observed before Strong Earthquakes. Physics and Chemistry of the Earth, 2006, 31: 143-153.
CrossRef Google scholar
Qiang Z. J., Xu X. D., Dian C. G. Thermal Infrared Anomaly Precursor of Impending Earthquakes. Chinese Science Bulletin, 1991, 36(4): 319-323.
Raleigh C. B., Healy J. H., Bredehoeft J. D. An Experiment in Earthquake Control at Rangely, Colorado. Science, 1976, 191: 1230-1237.
CrossRef Google scholar
Rojstaczer S. A., Ingebritsen S. E., Hayba D. O. Permeability of Continental Crust Influenced by Internal and External Forcing. Geofluids, 2008, 8: 128-139.
CrossRef Google scholar
Sheldon H. A., Ord A. Evolution of Porosity, Permeability and Fluid Pressure in Dilatant Faults Post-Failure: Implications for Fluid Flow and Mineralization. Geofluids, 2005, 5: 272-288.
CrossRef Google scholar
Shimazaki K., Nakata T. Time-Predictable Model for Large Earthquakes. Geophysical Research Letters, 1980, 7: 279-282.
CrossRef Google scholar
Sleep N. H., Blanpied M. L. Creep, Compaction and the Weak Rheology of Major Faults. Nature, 1992, 359(6397): 687-692.
CrossRef Google scholar
Sleep N. H., Blanpied M. L. Ductile Creep and Compaction: A Mechanism for Transiently Increasing Fluid Pressure in Mostly Sealed Fault Zones. Pure and Applied Geophysics, 1994, 143: 9-40.
CrossRef Google scholar
Sibson R. H. Simpson D. W., Richards P. G. Fluid Flow Accompanying Faulting: Field Evidence and Models. Earthquake Prediction, 1981 SanFransisco: American Geophysical Union, 593-603.
Sibson R. H. Implications of Fault-Valve Behavior for Rupture Nucleation and Recurrence. Tectonophysics, 1992, 211: 283-293.
CrossRef Google scholar
Voss C. I., Provost A. M. A Model for Saturated-Unsaturated, Variable-Density Ground Water Flow with Solute or Energy Transport. Water-Resources Investigations Report, 2010
Wetmiller R. J., Adams J., Anglin F. M., . Aftershock Sequences of the 1982 Miramichi, New Brunswick, Earthquakes. Bulletin of the Seismological Society of America, 1984, 74: 621-653.
Yang G., Li H. B., Zhang W., . Features of the Anxian-Guanxian Fault Zone in Longmenshan Area of Sichuan Province: A Case Study of No. Geological Bulletin of China, 2012, 31(8): 1219-1232.
Zoback M. D., Byerlee J. D. The Effect of Microcrack Dilatancy on the Permeability of Westerly Granite. Journal of Geophysical Research, 1975, 80(5): 752-755.
CrossRef Google scholar
Zoback M. D. Critically-Stressed Faults, Deep Crustal Fluid Flow and Dynamic Constraints on Hydrocarbon Migration. Workshop on Fluids and Fractures in the Lithosphere, 1999 Nancy: Univ. Nancy

Accesses

Citations

Detail

Sections
Recommended

/