Demasking multiple artifact in crustal seismic images from marine reflection data in the southern california borderland

Christopher Gantela , Aifei Bian , Hua-Wei Zhou , Tom Bjorklund

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (4) : 592 -597.

PDF
Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (4) : 592 -597. DOI: 10.1007/s12583-015-0558-3
Article

Demasking multiple artifact in crustal seismic images from marine reflection data in the southern california borderland

Author information +
History +
PDF

Abstract

Marine seismic reflection surveys are often masked by strong water-bottom multiples that limit the use of data beyond the first multiple waves. In this study, we have successfully suppressed much of the multiple artifacts in the depth images of two of the marine seismic reflection profiles from the Los Angeles regional seismic experiment (LARSE) by applying reverse time migration (RTM). In contrast to most seismic reflection methods that use only primary reflections and diffractions, the two-way RTM migrates both primaries and multiple reflections to their places of origination: seabed multiples to the sea bottom and primaries to the reflecting interfaces. Based on the RTM depth sections of LARSE lines 1 and 2, we recognize five stratigraphic units from the sea bottom to a depth of 6 km. These units are Pliocene and younger strata, probably Miocene syntectonic strata, two deeper sequences of unknown age and lithology as well as Miocene volcanic layers on Catalina ridge. Several inferred igneous intrusions in the upper crust comprise a sixth unit. The existence of a thick sedimentary section in the Catalina Basin, which might include Paleogene and Cretaceous fore-arc strata, has important geologic significance. If borne out by further studies, significant revisions of current structural and stratigraphic interpretations of the California borderland would be warranted.

Keywords

demasking multiple artifact / reverse time migration / LARSE / Catalina schist / hydrocarbon basin

Cite this article

Download citation ▾
Christopher Gantela, Aifei Bian, Hua-Wei Zhou, Tom Bjorklund. Demasking multiple artifact in crustal seismic images from marine reflection data in the southern california borderland. Journal of Earth Science, 2015, 26(4): 592-597 DOI:10.1007/s12583-015-0558-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Atwater T. Weigand P. W. Plate Tectonic History of Southern California with Emphasis on the Western Transverse Ranges and Santa Rosa Island. Contributions to the Geology of the Northern Channel Islands, Southern California. American Association of Petroleum Geologists, Pacific Section, 1998, 1-8.

[2]

Baher S., Fuis G., Sliter R., . Upper-Crustal Structure of the Inner Continental Borderland near Long Beach, California. Bulletin of the Seismological Society of America, 2005, 95(5): 1957-1969.

[3]

Bjorklund T., Burke K., Zhou H. W., . Miocene Rifting in the Los Angeles Basin: Evidence from the Puente Hills Half-Graben, Volcanic Rocks, and P-Wave Tomography. Geology, 2002, 30(5): 447-450.

[4]

Bohannon R. G., Geist E. Upper Crustal Structure and Neogene Tectonic Development of the California Continental Borderland. Geological Society of America Bulletin, 1998, 110(6): 779-800.

[5]

Brocher T. M., Clayton R. W., Klitgord K. D., . Multichannel Seismic Reflection Profiling on the R/V Maurice Ewing during the Los Angeles Seismic Experiment (LARSE) California 1995. U.S. Dept. of the Interior. U.S. Geological Survey, Open-File Report, 1995, 95.

[6]

Brocher T. M. t, Brink U. S., Abramovitz T. Synthesis of Crustal Seismic Structure and Implications for the Concept of a Slab Gap beneath Coastal California. International Geology Review, 1999, 41(3): 263-274.

[7]

Crandall G. J., Luyendyk B. P., Reichle M. S., . A Marine Seismic Refraction Study of the Santa Barbara Channel, California. Marine Geophysical Research, 1983, 6(1): 15-37.

[8]

Crouch J. K., Suppe J. Late Cenozoic Tectonic Evolution of the Los Angeles Basin and Inner California Borderland: A Model for Core Complex. Geological Society America Bulletin, 1993, 105(11): 1415-1434.

[9]

Forman J. A. Age of the Catalina Island Pluton, California. Geological Society America Special Paper, 1970, 124: 37-45.

[10]

Guitton A., Kaelin B., Biondi B. Least-Squares Attenuation of Reverse-Time-Migration Artifacts. Geophysics, 2007, 72(1): S19-S23.

[11]

Miller K. C., Howie J. M., Ruppert S. D. Shortening within Underplated Oceanic Crust beneath the Central California Margin. Journal of Geophysical Research, 1992, 97(B13): 19961-19980.

[12]

Nicholson C., Sorlien C. C., Atwater T., . Microplate Capture, Rotation of the Western Transverse Ranges and Initiation of the San Andreas Transform as a Low-Angle Fault System. Geology, 1994, 22(6): 491-495.

[13]

Ridgway J. R., Zumberge M. A. Deep-Towed Gravity Surveys in the Southern California Continental Borderland. Geophysics, 2002, 67(3): 777-787.

[14]

Rowland S. M. Geology of Santa Catalina Island. California Geology, 1984, 37(11): 239-251.

[15]

ten Brink U. S., Zhang J., Brocher T. M., . Geophysical Evidence for the Evolution of the California Inner Continental Borderland as a Metamorphic Core Complex. Journal of Geophysical Research, 2000, 105(B3): 5835-5857.

[16]

Thornton M. P., Zhou H. W. Crustal-Scale Prestack Depth Imaging for 1994 and 1999 LARSE Surveys. Geophysical Prospecting, 2008, 56(4): 577-585.

[17]

Vedder J. G. Regional Geology and Petroleum Potential of the Southern California Borderland. Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series, 1987, 6: 403-447.

[18]

Youn O. K., Zhou H. Depth Imaging with Multiples. Geophysics, 2001, 66(1): 246-255.

[19]

Zhou H. W. Multiscale Traveltime Tomography. Geophysics, 2003, 68(5): 1639-1649.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/