Paleo and modern stress regimes of central North Tabriz fault, Eastern Azerbaijan Province, NW Iran

A. Yousefi-Bavil , M. Moayyed

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (3) : 361 -372.

PDF
Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (3) : 361 -372. DOI: 10.1007/s12583-015-0549-4
Article

Paleo and modern stress regimes of central North Tabriz fault, Eastern Azerbaijan Province, NW Iran

Author information +
History +
PDF

Abstract

The North Tabriz fault is a segmented dextral fault in Northwest Iran, with a history of major destructive earthquakes that have repeatedly destroyed the city of Tabriz (current population 1.6 million). The quiescence of the fault (last major temblor in 1854) and a lack of outcrop study have hampered stress analysis. Resolution of the stress states on the fault could be used for seismotectonic study along the North Tabriz fault and for understanding the geodynamics of the Arabia-Eurasia collision zone. Using fault-slip data collected from 88 localities in the fault system, we conducted an inversion analysis of this fault-slip data and analysis of the stratigraphic, geometric, and structural information. As a result, we confirmed that transcurrent deformation is prevalent on the North Tabriz fault and adjacent areas and is generally accomplished by predominant NW-SE-trending dextral and NE-SW-trending sinistral faults. Specifically, three separate tectonic episodes are recognised from the stress inversion data, consistent with the geologic data: (i) a post-Cretaceous and pre-Early Miocene compressional (Laramian) stress regime, (ii) an Early Miocene extensional stress regime, and (iii) modern tectonic episode with different local stress regimes (compressional and extensional) along the different segments of this fault.

Keywords

stress regime / NW Iran tectonics / North Tabriz fault / stress inversion / strike-slip fault

Cite this article

Download citation ▾
A. Yousefi-Bavil, M. Moayyed. Paleo and modern stress regimes of central North Tabriz fault, Eastern Azerbaijan Province, NW Iran. Journal of Earth Science, 2015, 26(3): 361-372 DOI:10.1007/s12583-015-0549-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aghanabati A. Geology of Iran. Geological Survey of Iran, Tehran (in Persian), 2004

[2]

Angelier J. Determination of the Mean Principal Direction of Stresses for a Given Fault Population. Tectonophysics, 1979, 56(3–4): T17-T26.

[3]

Angelier J. Tectonic Analysis of Fault Slip Data Sets. Journal of Geophysical Research, 1984, 89(B7): 5835-5848.

[4]

Angelier J. From Orientation to Magnitudes in Paleostress Determination Using Fault Slip Data. Journal of Structural Geology, 1989, 11(2): 37-50.

[5]

Armijo R, Carey E, Cisternas A. The Inverse Problem in Microtectonics and the Separation of Tectonic Phases. Tectonophysics, 1982, 82(1–2): 145-160.

[6]

Berberian M, Arshadi S. On the Evidence of the Youngest Activity of the North Tabriz Fault and the Seismicity of Tabriz city. Geological Survey of Iran Report, 1976, 39: 397-418.

[7]

Berberian M, Yeats R S. Patterns of Historical Earthquake Rupture in the Iranian Plateau. Bulletin of the Seismological Society of America (BSSA), 1999, 89: 120-139.

[8]

Bott M H P. The Mechanisms of Oblique Slip Faulting. Geological Magazine, 1959, 96: 109-117.

[9]

Carey E, Brunier B. Analyse Théorique et Numérique D’un Modèle Mécanique Élémentaire Appliqué à L’étude D’une Population de Failles. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences, 1974, 279(D): 891-894.

[10]

Doblas M. Slickenside Kinematic Indicators. Tectonophysics, 1998, 295(1–2): 187-197.

[11]

Eftekhar-nezhad J. Brief Description of Tectonic History and Structural Development of Azarbaidjan, 1975 Tehran: Geological Survey of Iran Report

[12]

Etchecopar A. An Inverse Problem in Microtectonics for the Determination of Stress Tensors from Fault Striation Analysis. Journal of Structural Geology, 1981, 3(1): 51-65.

[13]

Fry N. Striated Faults: Visual Appreciation of Their Constraint on Possible Palaeostress Tensors. Journal of Structural Geology, 1999, 21(1): 7-21.

[14]

Galindo-Zaldívar J, González-Lodeiro F. Faulting Phase Differentiation by Means of Computer Search on a Grid Pattern. Annales Tectonicae, 1988, 2: 90-97.

[15]

Geological Survey of Iran Eastern Azerbaijan, Tabriz, Iran 1: 100 000 Geological Series, Sheet 5266, Geological Survey of Iran, Tehran Geological Survey of Iran, 2006. Eastern Azerbaijan, Khoja, Iran 1: 100 000 Geological Series, Sheet 5366, 1993 Tehran: Geological Survey of Iran

[16]

Golonka J. Plate Tectonic Evolution of the Southern Margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics, 2004, 381(1–4): 235-273.

[17]

Hancock P L. Brittle Microtectonics: Principles and Practice. Journal of Structural Geology, 1985, 7(3–4): 437-457.

[18]

Hardcastle K C, Hills L S. BRUTE3 and SELECT: QUICKBASIC 4 Programs for Determination of Stress Tensor Configurations and Separation of Heterogeneous Populations of Fault-Slip Data. Computers & Geosciences, 1991, 17(1): 23-43.

[19]

Hessami K, Pantosi D, Tabassi H, . Paleoearthquakes and Slip Rates of the North Tabriz Fault, NW Iran: Preliminary Results. Annals of Geophysics, 2003, 46(5): 903-915.

[20]

Huang Q. Computer-Based Method to Separate Heterogeneous Sets of Fault-Slip Data into Sub-Sets. Journal of Structural Geology, 1988, 10(3): 297-299.

[21]

Karakhanian A S, Trifonovb V G, Philip H, . Active Faulting and Natural Hazards in Armenia, Eastern Turkey and Northwestern Iran. Tectonophysics, 2004, 380(3–4): 189-219.

[22]

Koçyiğit A, Yilmaz A, Adamia S, . Neotectonics of East Anatolian Plateau (Turkey) and Lesser Caucasus: Implication for Transition from Thrusting to Strike-Slip Faulting. Geodinamica Acta, 2001, 14(1–3): 177-195.

[23]

Lisle R J. Principal Stress Orientations from Faults: An Additional Constraint. Annales Tectonicae, 1987, 1: 155-158.

[24]

Lisle R J. Romsa: A Basic Program for Palaeostress Analysis Using Fault-Striation Data. Computers & Geosciences, 1988, 14(2): 255-259.

[25]

Lisle R J, Orife T. StresstatTRESSTAT: A Basic Program for Numerical Evaluation of Multiple Stress Inversion Results. Computers & Geosciences, 2002, 28(9): 1037-1040.

[26]

Moradi A S, Tatar M, Hatzfeld D, . Crustal Velocity Model and Fault Mechanism of the Tabriz Strike-Slip Zone. Geosciences, 2009, 18(70): 140-153.

[27]

Nabavi M H. An Introduction to Geology of Iran, 1976 Tehran: Geological Survey of Iran

[28]

Nemcok M, Lisle R J. A Stress Inversion Procedure for Polyphase Fault/Slip Data Sets. Journal of Structural Geology, 1995, 17(10): 1445-1453.

[29]

Orife T, Lisle R J. Numerical Processing of Palaeostress Results. Journal of Structural Geology, 2003, 25(6): 949-957.

[30]

Schellart W P. Shear Test Results for Cohesion and Friction Coefficients for Different Granular Materials: Scaling Implications for Their Usage in Analogue Modelling. Tectonophysics, 2000, 324(1–2): 1-16.

[31]

Simón-Gómez J L. Analysis of a Gradual Change in Stress Regime (Example from the Eastern Iberian Chain, Spain). Tectonophysics, 1986, 124(1–2): 37-53.

[32]

Stöcklin J. Structural History and Tectonics of Iran, a Review. AAPG Bulletin, 1968, 52(7): 1229-1258.

[33]

Taghipour K. Investigation of Tabriz Fault between Tabriz and Bostanabad: [Dissertation], 2004 Tabriz: University of Tabriz

[34]

Talebian M, Jackson J A. Offset on the Main Recent Fault of the NW Iran and Implications for the Late Cenozoic Tectonics of the Arabia-Eurasia Collision Zone. Geophysical Journal International, 2002, 150(2): 422-439.

[35]

Vernant P, Nilforushan F, Hatzfeld D, . Present-Day Crustal Deformation and Plate Kinematics in the Middle East Constrained by GPS Measurements in Iran and Northern Oman. Geophysical Journal International, 2004, 157(1): 381-398.

[36]

Wallace R E. Geometry of Shearing Stress and Relation to Faulting. Journal of Geology, 1951, 59: 118-130.

[37]

Yamaji A. The Multiple Inverse Method: A New Technique to Separate Stresses from Heterogeneous Fault-Slip Data. Journal of Structural Geology, 2000, 22(4): 441-452.

[38]

Yousefi-Bavil A. SRAD Radial Diagram: A New Way to Display Important Aspects of Fault-Slip Analysis Results. Jordan Journal of Earth and Environmental Sciences, 2014, 6(1): 37-43.

[39]

Žalohar J, Vrabec M. Paleostress Analysis of Heterogeneous Fault-Slip Data: The Gauss Method. Journal of Structural Geology, 2007, 29(11): 1798-1810.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/