Sr isotopes and REEs geochemistry of anhydrites from L vent black smoker chimney, East Pacific Rise 9°N–10°N

Huiqiang Yao , Huaiyang Zhou , Xiaotong Peng , Gaowen He

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (6) : 920 -928.

PDF
Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (6) : 920 -928. DOI: 10.1007/s12583-015-0545-8
Article

Sr isotopes and REEs geochemistry of anhydrites from L vent black smoker chimney, East Pacific Rise 9°N–10°N

Author information +
History +
PDF

Abstract

High resolution sampling, for Sr isotope and REE analyses, was carried out along a transaction of L vent chimney collected from East Pacific Rise 9°N–10°N. Sr isotopes show these anhydrites are precipitated from a mixture between hydrothermal fluid and seawater. The calculated relative proportion of seawater and hydrothermal fluid shows that the mixing is heterogeneous on the transection of the L vent chimney. Anhydrites from the chimney show uniform chondrite-normalized REE pattern with enrichment of LREE and positive Eu anomaly. While normalized to the REE of end-member hydrothermal fluid, anhydrites also show uniform REE pattern but with negative Eu anomaly and enrichment of HREE. Combining previous studies on REEs of hydrothermal fluids from different hydrothermal systems and the hydrothermal fluid data from this region, we suggested that REE-anion complexing, rather than crystallography controlling, is the main factor that controls the REE partition behavior in the anhydrite during its precipitation from the mixture of hydrothermal fluid and seawater.

Keywords

East Pacific Rise 9°N–10°N / black smoker chimney / anhydrite / Sr isotope / REE

Cite this article

Download citation ▾
Huiqiang Yao, Huaiyang Zhou, Xiaotong Peng, Gaowen He. Sr isotopes and REEs geochemistry of anhydrites from L vent black smoker chimney, East Pacific Rise 9°N–10°N. Journal of Earth Science, 2015, 26(6): 920-928 DOI:10.1007/s12583-015-0545-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bach W., Roberts S., Vanko D. A., . Controls of Fluid Chemistry and Complexation on the Rare-Earth Element Contents of Anhydrite from the Pacmanus Subseafloor Hydrothermal System, Manus Basin, Papua New Guinea. Mineralium Deposita, 2003, 38: 916-935.

[2]

Bao X. S., Zhou H. Y., Peng X. T., . Geochemistry of REE and Yttrium in Hydrothermal Fluids from the Endeavour Segment, Juan de Fuca Ridge. Geochemical Journal, 2008, 42: 359-370.

[3]

Bischoff J. L., Seyfried W. E. Hydrothermal Chemistry of Seawater from 25 °C to 350 °C. American Journal of Science, 1978, 278: 838-860.

[4]

Bluth G. J., Ohmoto H. Sulfide-Sulfate Chimneys on the EPR 11° and 13° N Latitudes. Part II: Sulfur Isotopes. Canadian Mineralogist, 1988, 26: 505-515.

[5]

Bowers T. S. Stable Isotope Signatures of Water-Rock Interaction in Mid-Ocean Ridge Hydrothermal Systems: Sulfur, Oxygen and Hydrogen. Journal of Geophysical Research, 1989, 94: 5775-5786.

[6]

Chiba H., Uchiyama N., Teagle D. A. H. Stable Isotope Study of Anhydrite and Sulfide Minerals at the TAG Hydrothermal Mound, Mid-Atlantic Ridge, 26°N. Proceedings of the Ocean Drilling Program, Scientific Results, 1998, 158: 85-90.

[7]

Craddock P. R., Bach W., Seewald J. S., . Rare Earth Element Abundances in Hydrothermal Fluids from the Manus Basin, Papua New Guinea: Indicators of Sub-Seafloor Hydrothermal Processes in Back-Arc Basins. Geochimica et Cosmochimica Acta, 2010, 74: 5494-5513.

[8]

Ding K., Seyfried J. W. E., Zhang Z., . The in situ pH of Hydrothermal Fluids at Mid-Ocean Ridges. Earth and Planetary Science Letters, 2005, 237(1–2): 167-174.

[9]

Douville E., Bienvenu P., Charlou J. L., . Yttrium and Rare Earth Elements in Fluids from Various Deep-Sea Hydrothermal Systems. Geochimica et Cosmochimica Acta, 1999, 63(5): 627-643.

[10]

Elderfield H. The Oceanic Chemistry of the Rare-Earth Elements. Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1988, 325: 105-124.

[11]

Farrell C. W., Holland H. D., Petersen U. The Isotopic Composition of Strontium in Barites and Anhydrites from Kuroko Deposits. Mining Geology, 1978, 28: 281-291.

[12]

Fornari D. J., Shank T., Von Damm K. L., . Time-Series Temperature Measurements at High-Temperature Hydrothermal Vents, East Pacific Rise 9°49′–51′N: Evidence for Monitoring a Crustal Cracking Event. Earth and Planetary Science Letters, 1998, 160: 419-431.

[13]

Graham U. M., Bluth G. J., Ohmoto H. Sulfide-Sulfate Chimneys on the East Pacific Rise 11°N and 13°N, Part I: Mineralogy and Paragenesis. Canadian Mineralogist, 1988, 26: 487-504.

[14]

Haymon R. M., Fornari D. J., Damm K. L. V., . Volcanic Eruption of the Mid-Ocean Ridge along the East Pacific Rise Crest at 9°45′–52′N: Direct Submersible Observations of Seafloor Phenomena Associated with an Eruption Event in April, 1991. Earth and Planetary Science Letters, 1993, 119: 85-101.

[15]

Haymon R. M., Fornari D. J., Edwards M. H., . Hydrothermal Vent Distribution along the East Pacific Rise Crest (9°09′–54′N) and Its Relationship to Magmatic and Tectonic Processes on Fast-Spreading Mid-Ocean Ridges. Earth and Planetary Science Letters, 1991, 104(2–4): 513-534.

[16]

Herzig P. M., Petersen S., Hannington M. D. Geochemistry and Sulfur-Isotopic Composition of the TAG Hydrothermal Mound, Mid-Atlantic Ridge, 26°N. Proceedings of the Ocean Drilling Program, Scientific Results, 1998, 158: 47-70.

[17]

Humphris S. E. Rare Earth Element Composition of Anhydrite: Implications for Deposition and Mobility within the Active TAG Hydrothermal Mound. Proceedings of the Ocean Drilling Program, Scientific Results, 1998, 158: 143-159.

[18]

Humphris S. E., Bach W. On the Sr Isotope and REE Compositions of Anhydrites from the TAG Seafloor Hydrothermal System. Geochimica et Cosmochimica Acta, 2005, 69(6): 1511-1525.

[19]

Kim J., Lee I., Lee K.-Y. S, Sr, and Pb Isotopic Systematics of Hydrothermal Chimney Precipitates from the Eastern Manus Basin, Western Pacific: Evaluation of Magmatic Contribution to Hydrothermal System. Journal of Geophysical Research: Solid Earth, 2004, 109(B12): 159-163.

[20]

Klinkhammer G. P., Chin C. S., Wilson C., . Venting from the Mid-Atlantic Ridge at 37°17′: The Lucky Strike Hydrothermal Site. Geological Society, London, Special Publication, 1995, 87: 87-96.

[21]

Klinkhammer G. P., Elderfield H., Edmond J. M., . Geochemical Implications of Rare Earth Element Patterns in Hydrothermal Fluids from Mid-Ocean Ridges. Geochimica et Cosmochimica Acta, 1994, 58(23): 5105-5113.

[22]

Klinkhammer G. P., Elderfield H., Hudson A. Rare Earth Elements in Seawater near Hydrothermal Vents. Nature, 1983, 305: 185-188.

[23]

Kuhn T., Herzig P. M., Hannington M. D., . Origin of Fluids and Anhydrite Precipitation in the Sediment-Hosted Grimsey Hydrothermal Field North of Iceland. Chemical Geology, 2003, 202: 5-21.

[24]

Kusakabe M., Chiba H. Oxygen Isotope Geothermometry Applied to Sulfate Minerals from the Kuroko Deposits. Mining Geology, 1979, 29: 257-264.

[25]

Lin L., Pang Y. C., Ma L. Y., . Submarine Hydrothermal/Hot Spring Deposition of Early Cambrian Niutitang Formation in South China. Journal of Earth Science, 2010, 21(1): 40-43.

[26]

Mills R. A., Elderfried H. Rare Earth Element Geochemistry of Hydrothermal Deposits from the Active TAG Mound, 26°N Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 1995, 59(17): 3511-3524.

[27]

Mills R. A., Teagle D. A. H., Tivey M. K. Fluid Mixing and Anhydrite Precipitation within the TAG Mound. Proceedings of the Ocean Drilling Program, Scientific Results, 1998, 158: 119-127.

[28]

Mills R. A., Tivey M. K. Cann J. R., Elderfield H., Laughton A. Seawater Entrainment and Fluid Evolution with TAG Hydrothermal Mound: Evidence from Analysis of Anhydrite. Mid-Ocean Ridge, 1999 Cambridge: Cambridge University Press, 224-248.

[29]

Mitra A., Elderfield H., Greaves M. J. Rare Earth Elements in Submarine Hydrothermal Fluids and Plumes from the Mid-Atlantic Ridge. Marine Chemistry, 1994, 46: 217-235.

[30]

Ogawa Y., Shikazono N., Ishiyama D., . Mechanisms for Anhydrite and Gypsum Formation in the Kuroko Massive Sulfide-Sulfate Deposits, North Japan. Mineralium Deposita, 2007, 42: 219-233.

[31]

Owen R. M., Oliverez A. M. Geochemistry of Rare Earth Elements in Pacific Hydrothermal Sediments. Marine Chemistry, 1988, 25: 183-196.

[32]

Ravizza G., Blusztajn J., Damm K. L. V., . Sr Isotope Variations in Vent Fluids from 9°46′–9°54′N East Pacific Rise: Evidence of a Non-Zero-Mg Fluid Component. Geochimica et Cosmochimica Acta, 2001, 65(5): 729-739.

[33]

Sato T. A Chloride Complex Model for Kuroko Mineralization. Geochemical Journal, 1973, 7: 245-270.

[34]

Shannon R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distance in Halides and Chalcogenides. Acta Crystallographica Section A, 1976, 32: 751-767.

[35]

Shikazono N., Holland H. D., Quirk R. F. Anhydrite in Kuroko Deposits: Mode of Occurrence and Depositional Mechanisms. Economic Geology Monograph, 1983, 5: 329-344.

[36]

Styrt M. M., Brackmann A. J., Holland H. D., . The Mineralogy and the Isotopic Composition of Sulfur in Hydrothermal Sulphide/Sulfate Deposits on the East Pacific Rise, 21°N Latitude. Earth and Planetary Science Letters, 1981, 53: 382-390.

[37]

Sun S. S., McDonough W. F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42: 313-345.

[38]

Teagle D. A. H., Alt J. C., Chiba H., . Dissecting an Active Hydrothermal Deposit: The Strontium and Oxygen Isotopic Anatomy of the TAG Hydrothermal Mound—Anhydrite. Proceedings of the Ocean Drilling Program, Scientific Results, 1998, 158: 129-142.

[39]

Teagle D. A. H., Alt J. C., Chiba H., . Strontium and Oxygen Isotopic Constraints on Fluid Mixing Alteration and Mineralization in the TAG Hydrothermal Deposit. Chemical Geology, 1998, 149: 1-24.

[40]

Teagle D. A. H., Alt J. C., Halliday A. N. Tracing the Chemical Evolution of Fluids during Hydrothermal Recharge: Constraints from Anhydrite Recovered in ODP Hole 504B. Earth and Planetary Science Letters, 1998, 155: 167-182.

[41]

Thompson G., Humphris S. E., Shroeder B., . Hydrothermal Mineralization on the Mid-Atlantic Ridge. Canadian Mineralogist, 1988, 26: 691-711.

[42]

Von Damm K. L. Chemistry of Hydrothermal Vent Fluids from 9–10°N, East Pacific Rise: “Time Zero”, the Immediate Posteruptive Period. Journal of Geophysical Research, 2000, 105(B5): 11203-11222.

[43]

Von Damm K. L. German C. R., Lin J., Parson L. M. Evolution of the Hydrothermal System at East Pacific Rise 9°54′N: Geochemical Evidence for Changes in the Upper Oceanic Crust. Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans, 2004 Washington DC: American Geophysical Union, 285-304.

[44]

Von Damm K. L., Buttermore L. G., Oosting S. E., . Direct Observation of the Evolution of a Seafloor ‘Black Smoker’ from Vapor to Brine. Earth and Planetary Science Letters, 1997, 149(1–4): 101-111.

[45]

Von Damm K. L., Lilley M. D., . Wilcock W. S. D., Delong E. F., Kelley D. S., . Diffuse Flow Hydrothermal Fluids from 9°50′N East Pacific Rise: Origin, Evolution and Biogeochemical Controls. The Subseafloor Biosphere at Mid-Ocean Ridges, 2004, 245-268.

[46]

Von Damm K. L., Oosting S. E., Kozlowskl R., . Evolution of East Pacific Rise Hydrothermal Vent Fluids Following a Volcanic Eruption. Nature, 1995, 375: 47-50.

[47]

Woodruff L. G., Shanks III W. C. Sulfur Isotope Study of Chimney Minerals and Vent Fluids from 21°N, East Pacific Rise: Hydrothermal Sulfur Sources and Disequilibrium Sulfate Reduction. Journal of Geophysical Research, 1988, 93(B5): 4562-4572.

[48]

Zhou J. X., Huang Z. L., Bao G. P., . Sources and Thermo-Chemical Sulfate Reduction for Reduced Sulfur in the Hydrothermal Fluids, Southeastern SYG Pb-Zn Metallogenic Province, SWChina. Journal of Earth Science, 2013, 24(5): 759-771.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/