Radial anisotropy in the crust beneath the northeastern Tibetan Plateau from ambient noise tomography

Jing Tan, Hongyi Li, Xinfu Li, Ming Zhou, Longbin Ouyang, Sanjian Sun, Dan Zheng

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (6) : 864-871.

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (6) : 864-871. DOI: 10.1007/s12583-015-0543-x
Article

Radial anisotropy in the crust beneath the northeastern Tibetan Plateau from ambient noise tomography

Author information +
History +

Abstract

Through analysis of Rayleigh wave and Love wave Green’s functions estimated from ambient noise tomography, we obtain radial anisotropy and shear wave velocity structure beneath the northeastern Tibetan Plateau. With two hundred and twenty three broadband seismic stations deployed by China Earthquake Administration, a collaborative seismic experiment of northern Tibet (ACSENT) experiment and northeastern Tibet seismic (NETS) experiment provide the unprecedented opportunity to resolve the spatial distribution of the radial anisotropy within the crust of the northeastern Tibetan Plateau. Discrepancies between Love (sh) and Rayleigh (sv) wave velocities show complex anisotropic patterns associated with the dynamic processes of the collision between the Indian and Eurasian plates: (1) In the upper crust, V sv>V sh anisotropy is dominant throughout the study area which probably reflects fossil microcracks induced by the uplift, folding and erosion geodynamic processes; (2) in the middle crust, V sh>V sv observed beneath the Songpan-Ganzi terrane and the northwestern Qilian orogen correlates well with a mid-crustal low velocity zone (LVZ); (3) at depths deeper than 40 km, V sh>V sv is still found in the Songpan-Ganzi terrane. This anisotropy could be caused by the sub-horizontal alignment of anisotropic minerals that has followed the collision between India and Eurasia. However, the northwestern Qilian orogen is associated with V sv>V sh anisotropy which may be related to the vertically aligned seismic anisotropic minerals caused by the crustal thickening.

Keywords

northeastern Tibetan Plateau / ambient noise tomography / radial anisotropy

Cite this article

Download citation ▾
Jing Tan, Hongyi Li, Xinfu Li, Ming Zhou, Longbin Ouyang, Sanjian Sun, Dan Zheng. Radial anisotropy in the crust beneath the northeastern Tibetan Plateau from ambient noise tomography. Journal of Earth Science, 2015, 26(6): 864‒871 https://doi.org/10.1007/s12583-015-0543-x

References

Bao X. W., Song X. D., Xu M. J., . Crust and Upper Mantle Structure of the North China Craton and the NE Tibetan Plateau and Its Tectonic Implications. Earth and Planetary Science Letters, 2013, 369/370: 129-137.
CrossRef Google scholar
Bensen G. D., Ritzwoller M. H., Barmin M. P., . Processing Seismic Ambient Noise Data to Obtain Reliable Broad-Band Surface Wave Dispersion Measurements. Geophysical Journal International, 2007, 169: 1239-1260.
CrossRef Google scholar
Chang L. J., Wang C. Y., Ding Z. F., . Seismic Anisotropy of Upper Mantle in the Northeastern Margin of the Tibetan Plateau. Chinese Journal of Geophysics, 2008, 51(2): 298-306.
CrossRef Google scholar
Chen J. H., Liu Q. Y., Li S. C., . Crust and Upper Mantle S-Wave Velocity Structure across Northeastern Tibetan Plateau and Ordos Block. Chinese Journal Geophysics, 2005, 48(2): 333-342.
Chen Y., Badal J., Zhang Z. J. Radial Anisotropy in the Crust and Upper Mantle beneath the Qinghai-Tibet Plateau and Surrounding Regions. Journal of Asian Earth Sciences, 2009, 36: 289-302.
CrossRef Google scholar
Chen Y., Badal J., Hu J. F. Love and Rayleigh Wave Tomography of the Qinghai-Tibet Plateau and Surrounding Areas. Pure and Applied Geophysics, 2010, 167: 1171-1203.
CrossRef Google scholar
Cheng C., Chen L., Yao H. J., . Distinct Variations of Crustal Shear Wave Velocity Structure and Radial Anisotropy beneath the North China Craton and Tectonic Implications. Gondwana Research, 2013, 23: 25-38.
CrossRef Google scholar
Dziewonski A., Bloch S., Landisman M. A Technique for the Analysis of Transient Seismic Signals. Bulletin of the Seismological Society of America, 1969, 59: 427-444.
Flesch L. M., Holt W. E., Silver P. G., . Constraining the Extent of Crust-Mantle Coupling in Central Asia Using GPS, Geologic, and Shear-Wave Splitting Data. Earth and Planetary Science Letters, 2005, 238: 248-268.
CrossRef Google scholar
Ge X. H., Liu J. L. Formation and Tectonic Background of the Northern Qilian Orogenic Belt. Earth Science Frontiers, 1999, 6(4): 223-230.
Guo Z., Gao X., Wang W., . Upper-and Mid-Crustal Radial Anisotropy beneath the Central Himalaya and Southern Tibet from Seismic Ambient Noise Tomography. Geophysical Journal International, 2012, 189(2): 1169-1182.
CrossRef Google scholar
Herrmann R. B. Some Aspects of Band-Pass Filtering of Surface Waves. Bulletin of the Seismological Society of America, 1973, 63: 663-671.
Huang H., Yao H. J., van der Hilst R. D. V. D. Radial Anisotropy in the Crust of SE Tibet and SW China from Ambient Noise Interferometry. Geophysical Research Letters, 2010, 37 21 L21310
CrossRef Google scholar
Karplus M. S., Zhao W., Klemperer S. L., . Injection of Tibetan Crust beneath the South Qaidam Basin: Evidence from INDEPTH IV Wide-Angle Seismic Data. Journal of Geophysical Research, 2011, 116 07301
CrossRef Google scholar
Li H. Y., Su W., Wang C. Y., . Ambient Noise Rayleigh Wave Tomography in Western Sichuan and Eastern Tibet. Earth and Planetary Science Letters, 2009, 282: 201-211.
CrossRef Google scholar
Li H. Y., Bernardi F., Michelini A. Surface Wave Dispersion Measurements from Ambient Seismic Noise Analysis in Italy. Geophysical Journal International, 2010, 180: 1242-1252.
CrossRef Google scholar
Li H. Y., Li S., Song X. D., . Crustal and Uppermost Mantle Velocity Structure beneath Northwestern China from Seismic Ambient Noise Tomography. Geophysical Journal International, 2012, 188: 131-143.
CrossRef Google scholar
Liang C. T., Song X. D. A Low Velocity Belt beneath Northern and Eastern Tibetan Plateau from Pn Tomography. Geophysical Research Letters, 2006, 33 22306
CrossRef Google scholar
Luo Y., Xu Y., Yang Y. Crustal Radial Anisotropy beneath the Dabie Orogenic Belt from Ambient Noise Tomography. Geophysical Journal International, 2013, 195(2): 1149-1164.
CrossRef Google scholar
Niu F. L., Li J. Component Azimuths of the CEArray Stations Estimated from P-Wave Particle Motion. Earthquake Science, 2011, 24: 3-13.
CrossRef Google scholar
Nishizawa O., Yoshino T. Seismic Velocity Anisotropy in Mica-Rich Rocks: An Inclusion Model. Geophysical Journal International, 2001, 145(1): 19-32.
CrossRef Google scholar
Pan S. Z., Niu F. L. Large Contrasts in Crustal Structure and Composition between the Ordos Plateau and the NE Tibetan Plateau from Receiver Function Analysis. Earth and Planetary Science Letters, 2011, 303: 291-298.
CrossRef Google scholar
Pei S. P., Zhao J. M., Sun Y. S., . Upper Mantle Seismic Velocities and Anisotropy in China Determined through Pn and Sn Tomography. Journal of Geophysical Research, 2007, 112 05312
CrossRef Google scholar
Peng Y. J., Huang Z. X., Su W., . Anisotropy in Crust and Upper Mantle beneath China Continent and Its Adjacent Seas. Chinese Journal of Geophysics, 2007, 50(3): 752-759.
CrossRef Google scholar
Shapiro N. M., Ritzwoller M. H., Molnar P., . Thining and Flow of Tibetan Crust Constrained by Seismic Anisotropy. Science, 2004, 305(5681): 233-236.
CrossRef Google scholar
Wang, C. Y., Han, W. B., Wu, J. P., et al., 2007. Crustal Structure beneath the Eastern Margin of the Tibetan Plateau and Its Tectonic Implications. Journal of Geophysical Research, 112: B07307. doi:10.1029/2005JB003873
Wang Q., Chung S. L., Li X. H., . Crustal Melting and Flow beneath Northern Tibet: Evidence from Mid-Miocene to Quaternary strongly Peraluminous Rhyolites in the Southern Kunlun Range. Journal of Petrology, 2012, 53(12): 2523-2566.
CrossRef Google scholar
Wang X. B., Zhu Y. T., Zhao X. K., . Deep Conductivity Characteristics of the Longmen Shan, Eastern Qinghai-Tibet Plateau. Chinese Journal of Geophysics, 2009, 52(2): 564-571.
Wang Y. Heat Flow Pattern and Lateral Variations of Lithosphere Strength in China Mainland: Constraints on Active Deformation. Physics of the Earth and Planetary Interiors, 2001, 126(3–4): 121-146.
CrossRef Google scholar
Weiss T., Siegesmund S., Rabbel W., . Seismic Velocities and Anisotropy of the Lower Continental Crust: A Review. Pure and Applied Geophysics, 1999, 156: 97-122.
CrossRef Google scholar
Xu Y., Liu F. T., Liu J. H., . Seismic Tomography beneath the Northwestern China Orogen and Adjacent Basins. Science in China Series D: Earth Sciences, 2000, 30(2): 113-122.
CrossRef Google scholar
Yang Y. J., Ritzwoller M. H., Zheng Y., . A Synoptic View of the Distribution and Connectivity of the Mid-Crustal Low Velocity Zone beneath Tibet. Journal of Geophysical Research, 2012, 117 04303
CrossRef Google scholar
Yanovskaya T. B., Kizima E. S., Antonova L. M. Structure of the Crust in the Black Sea and Adjoining Regions from Surface Wave Data. Journal of Seismology, 1998, 2(4): 303-316.
CrossRef Google scholar
Yue, H., Chen, J., Sandvol, E., et al., 2012. Lithospheric and Upper Mantle Structure of the Northeastern Tibetan Plateau. Journal of Geophysical Research, 117: B05307. doi:10.1029/2011JB008545

Accesses

Citations

Detail

Sections
Recommended

/