Multifractal analysis of geochemical stream sediment data in Bange region, northern Tibet

Xianzhong Ke , Shuyun Xie , Youye Zheng , Salah Fadlallah Awadelseid , Shunbao Gao , Liming Tian

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (3) : 317 -327.

PDF
Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (3) : 317 -327. DOI: 10.1007/s12583-015-0538-7
Article

Multifractal analysis of geochemical stream sediment data in Bange region, northern Tibet

Author information +
History +
PDF

Abstract

The aim of this study is to quantify the geochemical elements distribution patterns analyzed from stream sediment data and then to delineate favorable areas for mineral exploration. A total of 7 270 stream sediment samples were collected from four subareas and 37 rock (ore) chip samples from five different locations in the Bange region, northern Tibet (China). The multifractal spectra of 12 elements including Au, Ag, As, Cu, Mo, Pb, Zn, W, Sn, Bi, Sb and Hg are represented by the method of moments, and characterized by five quantitative multifractal parameters. The results show that the multifractality for Cu and Bi in the Gongma area is much stronger than those in other subareas. Both the asymmetry index of multifractal spectra and the variance coefficients of Cu and Bi in this area are the highest, which imply that the distribution pattern of Cu and Bi in the Gongma area is the most heterogeneous. These multifractal parameters indicate that the Gongma area is the most favorable for prospecting Cu and Bi. The results obtained by the method of moments are in agreement with petrochemical analysis and field observation. It is suggested that multifractal analysis can be used as an effective tool to evaluate the ore-forming potential in the study area and to provide new approaches for geochemical exploration.

Keywords

stream sediment / the method of moments / multifractal spectrum / ore-forming potential / Tibet

Cite this article

Download citation ▾
Xianzhong Ke, Shuyun Xie, Youye Zheng, Salah Fadlallah Awadelseid, Shunbao Gao, Liming Tian. Multifractal analysis of geochemical stream sediment data in Bange region, northern Tibet. Journal of Earth Science, 2015, 26(3): 317-327 DOI:10.1007/s12583-015-0538-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agterberg F P. Multifractal Simulation of Geochemical Map Patterns. Journal of China University of Geosciences, 2001, 12(1): 31-39.

[2]

Carlson C A. Spatial Distribution of Ore Deposits. Geology, 1991, 19(2): 111-114.

[3]

Carranza E J M. Controls on Mineral Deposit Occurrence Inferred from Analysis of Their Spatial Pattern and Spatial Association with Geological Features. Ore Geology Reviews, 2009, 35(3–4): 383-400.

[4]

Cheng Q M. The Perimeter-Area Fractal Model and Its Application to Geology. Mathematical Geology, 1995, 27(1): 69-82.

[5]

Cheng Q M. Spatial and Scaling Modeling for Geochemical Anomaly Separation. Journal of Geochemical Exploration, 1999, 65(3): 175-194.

[6]

Cheng Q M. Multifractality and Spatial Statistics. Computers and Geosciences, 1999, 25(9): 949-961.

[7]

Cheng Q M. Multifractal Theory and Geochemical Element Distribution Pattern. Earth Science—Journal of China University of Geosciences, 2000, 25(3): 311-318.

[8]

Cheng Q M. GeoData Analysis System (GeoDAS) for Mineral Exploration: User’s Guide and Exercise Manual, 2000 Toronto: Material for the Training Workshop on GeoDAS Held at York University

[9]

Cheng Q M, Agterberg F P. Multifractal Modeling and Spatial Point Processes. Mathematical Geology, 1995, 27(7): 831-845.

[10]

Cheng Q M, Agterberg F P. Multifractal Modeling and Spatial Statistics. Mathematical Geology, 1996, 28(1): 1-16.

[11]

Cheng Q M, Agterberg F P, Ballantyne S B. The Separation of Geochemical Anomalies from Background by Fractal Methods. Journal of Geochemical Exploration, 1994, 51(2): 109-130.

[12]

Cheng Q M, Agterberg F P, Bonham-Carter G F. A Spatial Analysis Method for Geochemical Anomaly Separation. Journal of Geochemical Exploration, 1996, 56(3): 183-195.

[13]

Cheng Q M, Bonham-Carter G F, Hall G E M, . Statistical Study of Trace Elements in the Soluble Organic and Amorphous Fe-Mn Phases of Surficial Sediments, Sudbury Basin. 1. Multivariate and Spatial Analysis. Journal of Geochemical Exploration, 1997, 59(1): 27-46.

[14]

Evertsz C J G, Mandelbrot B B. Peitgen H O, Jurgens H, Saupe D. Multifractal Measures(Appendix B). Chaos and Fractals, 1992 New York: Springer-Verlag

[15]

Feder J. Fractals, 1988 New York: Plenum Press

[16]

Gao S B, Zheng Y Y, Wang J S, . The Geochronology and Geochemistry of Intrusive Rocks in Bange Area: Constraints on the Evolution Time of the Bangong Lake-Nujiang Ocean Basin. Acta Petrologica Sinica, 2011, 27(7): 1973-1982.

[17]

Gao S B, Zheng Y Y, Xie M C, . Geodynamic Setting and Mineralizational Implication of the Xueru Intrusion in Ban’ge, Tibet. Earth Science—Journal of China University of Geosciences, 2011, 36(4): 729-739.

[18]

Grunsky E C, Agterberg F P. Spatial and Multivariate Analysis of Geochemical Data from Metavolcanic Rocks in the Ben Nevis Area, Ontario. Mathematical Geology, 1988, 20(7): 825-861.

[19]

Gumiel P, Sanderson D J, Arias M, . Analysis of the Fractal Clustering of Ore Deposits in the Spanish Iberian Pyrite Belt. Ore Geology Reviews, 2010, 38(4): 307-318.

[20]

He Z H, Li S Q, Hu Z K. Discussion on Industrial Index of Bismuth Deposit. Geology and Mineral Resources of South China, 2004, 2: 32-34.

[21]

Halsey T C, Jensen M H, Kadanoff L P, . Fractal Measures and Their Singularities—The Characterization of Strange Sets. Physical Review A, 1986, 33(2): 1141-1151.

[22]

Hou Z Q, Yang Z M, Qu X M, . The Miocene Gangdese Porphyry Copper Belt Generated during Post-Collisional Extension in the Tibetan Orogen. Ore Geology Review, 2009, 36(3): 25-51.

[23]

Li C J, Xu Y L, Jiang X L. The Fractal Model of Mineral Deposits. Geology of Zhejiang, 1994, 10(2): 25-32.

[24]

Li G M, Pan G T, Wang G M, . Evaluation and Prospecting Value of Mineral Resources in Gangdise Metallogenic Belt, Tibet, China. Journal of Chengdu University of Technology (Science & Technology Edition), 2004, 31(1): 22-27.

[25]

Li G M, She H Q, Zhang L, . Based on Mineral Resource Assessment System (MRAS) for the Metallogenic Prognosis in Gangdese Metallogenic Belt, Tibet. Geology and Exploration, 2009, 45(6): 645-654.

[26]

Liu Y J, Cao L M. An Introduction on Elements Geochemistry, 1987 Beijing: Geological Publishing House

[27]

Mandelbrot B B. The Fractal Geometry of Nature, 1983 New York: W. H. Freeman

[28]

Ministry of LandResources of China Specifications for Copper, Lead, Zinc, Silver, Nickel and Molybdenum Mineral Exploration, 2002

[29]

Pan G T, Mo X X, Hou Z Q, . Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 2006, 22(3): 521-533.

[30]

Qu X M, Hou Z Q, Huang W. Is Gangdese Porphyry Copper Belt the Second “Yulong” Copper Belt?. Mineral Deposits, 2001, 20(4): 355-366.

[31]

Raines G L. Are Fractal Dimensions of the Spatial Distribution of Mineral Deposits Meaningful?. Natural Resources Research, 2008, 17(2): 87-97.

[32]

Rui Z Y, Hou Z Q, Qu X M, . Metallogenetic Epoch of Gangdese Prophyry Copper Belt and Uplift of Qinghai-Tibet Plateau. Mineral Deposits, 2003, 22(3): 217-225.

[33]

Rui Z Y, Li G M, Zhang L S, . Metallic Ore Deposits on the Qinghai-Tibet Plateau. Geology in China, 2006, 33(2): 363-373.

[34]

Sanderson D J, Roberts S, Gumiel P. A Fractal Relationship between Vein Thickness and Gold Grade in Drill Core from La Codosera, Spain. Economic Geology, 1994, 89(1): 168-173.

[35]

She H Q, Li G M, Dong Y J, . Regional Metallogenic Prognosis and Mineral Reserves Estimation for Porphyry Copper Deposits in Gangdese Polymetallic Ore Belt, Tibet. Mineral Deposits, 2009, 28(6): 803-814.

[36]

Shi J F, Wang C N. Fractal Analysis of Gold Deposits in China: Implication for Giant Deposit Exploration. Earth Science—Journal of China University of Geosciences, 1998, 23(6): 616-618.

[37]

Sinclair A J. A Fundamental Approach to Threshold Estimation in Exploration Geochemistry: Probability Plots Revisited. Journal of Geochemical Exploration, 1991, 41(1–2): 1-22.

[38]

Song L. The Research About Minerogenetic Series in the Middle of Bangonghu-Nujiang Metallogenic Belt, Tibet: [Dissertation], 2011 Beijing: China University of Geosciences

[39]

Stanley C R. Comparison of Data Classification Procedures in Applied Geochemistry Using Monte Carlo Simulation: [Dissertation], 1988 Vancouver: University of British Columbia

[40]

Stanley C R, Sinclair A J. Comparison of Probability Plots and Gap Statistics in the Selection of Threshold for Exploration Geochemistry Data. Journal of Geochemical Exploration, 1989, 32(1–3): 355-357.

[41]

Turcotte D L. Fractals and Chaos in Geology and Geophysics, 1997, 2nd Edition Cambridge: Cambridge University Press

[42]

Turcotte D L. Fractals in Petrology. Lithos, 2002, 65(3–4): 261-271.

[43]

Wang Q H, Wang B S, Li J G, . Basic Features and Ore Prospect Evaluation of the Gangdise Island Arc, Tibet, and Its Copper Polymetallic Ore Belt. Geological Bulletin of China, 2002, 21(1): 35-45.

[44]

Wang Z J, Cheng Q M, Cao L, . Fractal Modelling of the Microstructure Property of Quartz Mylonite during Deformation Process. Mathematical Geology, 2006, 39(1): 53-68.

[45]

Wang Z J, Cheng Q M, Xu D Y, . Fractal Modeling of Sphalerite Banding in Jinding Pb-Zn Deposit, Yunnan, Southwestern China. Journal of China University of Geosciences, 2008, 19(1): 77-84.

[46]

Xie S Y. Fractal and Multifractal Properties of Geochemical Fields: [Dissertation], 2003 Wuhan: China University of Geosciences

[47]

Xie S Y, Bao Z Y. Multifractal and Geochemical Element Distribution Patterns. Geology-Geochemistry, 2003, 31(3): 97-102.

[48]

Xie S Y, Bao Z Y. The Method of Moments and Its Application to the Study of Mineralization in Shaoguan District, North Guangdong, China. Journal of Jilin University (Earth Science Edition), 2003, 33(4): 443-448.

[49]

Xie S Y, Bao Z Y. Fractal and Multifractal Properties of Geochemical Fields. Mathematical Geology, 2004, 36(7): 847-864.

[50]

Xie S Y, Bao Z Y. Application of Multifractal to Ore-Forming Potential Evaluation. Journal of Chengdu University of Technology (Science & Technology Edition), 2004, 31(1): 28-33.

[51]

Xie S Y, Cheng Q M, Chen G, . Application of Local Singularity in Prospecting Potential Oil/Gas Targets. Nonlinear Processes in Geophysics, 2007, 14(3): 285-292.

[52]

Xie S Y, Cheng Q M, Ke X Z, . Identification of Geochemical Anomaly by Multifractal Analysis. Journal of China University of Geosciences, 2008, 19(4): 334-342.

[53]

Xie S Y, Cheng Q M, Xing X T, . Geochemical Multifractal Distribution Patterns in Sediments from Ordered Streams. Geoderma, 2010, 160(1): 36-46.

[54]

Xie X J, Yin B C. Geochemical Patterns from Local to Global. Journal of Geochemical Exploration, 1993, 47(1–3): 109-129.

[55]

Zhang J C, Wang X W, Lei C Y, . Genesis of Late Yanshanian Granites and the Ore-Search Prospect in the Duoba-Bange Area, Gangdise Belt, Tibet, China. Journal of Chengdu University of Technology (Science and Technology Edition), 2011, 38(6): 671-677.

[56]

Zhao Y Y, Liu Y, Wang R J, . The Discovery of the Bismuth Mineralization Belt in the Bangong Co-Nujiang Metallogenic Belt of Tibet and Its Adjacent Areas and Its Geological Significance. Acta Geoscientica Sinica, 2010, 31(2): 183-193.

[57]

Zheng Y Y, Wang B S, Fan Z H, . Analysis of Tectonic Evolution in the Eastern Section of the Gangdise Mountains, Tibet and the Metallogenic Potentialities of Copper Gold Polymetal. Geological Science and Techonology Information, 2002, 21(2): 55-60.

[58]

Zheng Y Y, Xue Y X, Gao S B. Copper-Polymetal Metallogenic Series and Prospecting Perspective of Eastern Section of Gangdise. Earth Science—Journal of China University of Geosciences, 2003, 14(4): 349-355.

[59]

Zhu D C, Pan G T, Mo X X, . Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-northern Gangdese: New Insights from Volcanic Rocks. Acta Petrologica Sinica, 2006, 22(3): 534-546.

[60]

Zuo R G. Identifying Geochemical Anomalies Associated with Cu and Pb-Zn Skarn Mineralization using Principal Component Analysis and Spectrum-Area Fractal Modeling in the Gangdese Belt, Tibet (China). Journal of Geochemical Exploration, 2011, 111(1–2): 13-22.

[61]

Zuo R G, Cheng Q M, Agterberg F P, . Application of Singularity Mapping Technique to Identification Local Anomalies Using Stream Sediment Geochemical Data: A Case Study from Gangdese, Tibet, Western China. Journal of Geochemical Exploration, 2009, 101(3): 225-235.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/