Depositional environment of cherts of the Sikhote-Alin region (Russia far east): Evidence from major, trace and rare earth elements geochemistry

Igor’ V. Kemkin , Raisa A. Kemkina

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (2) : 259 -272.

PDF
Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (2) : 259 -272. DOI: 10.1007/s12583-015-0531-1
Article

Depositional environment of cherts of the Sikhote-Alin region (Russia far east): Evidence from major, trace and rare earth elements geochemistry

Author information +
History +
PDF

Abstract

The first data of geochemical study of the Benevka Section cherty rocks belonging to the Taukha terrane of the Sikhote-Alin Late Jurassic-Early Cretaceous accretionary prism, Russia Far East are presented. These data demonstrate essential distinctions of major, trace and rare earth element concentrations in different parts of the measured stratigraphic section. The lower chert horizons exhibit high Fe2O3 and MnO contents, low concentrations of Al2O3 and TiO2, relatively high V/Y ratio, and extremely low value of negative Ce anomaly. In contrast the upper horizons composed of clayey cherts and siliceous mudstones are characterized by high Al2O3, TiO2 and K2O contents, low Fe2O3 and MnO values, low V/Y ratio, and slightly negative Ce anomaly. In the middle part of the Benevka Section, in which cherts gradually changed to clayey cherts, intermediate geochemical characteristics are present. Based on these data obtained the depositional environments correspond to proximal to the spreding ridge, open-ocean and near continental margin regimes were successfully reconstructed from bottom to top of the Benevka Section, that indicate that significant horizontal movement took place of the sea-floor, on which the cherts were deposited.

Keywords

depositional environment / cherts geochemistry / Sikhote-Alin

Cite this article

Download citation ▾
Igor’ V. Kemkin, Raisa A. Kemkina. Depositional environment of cherts of the Sikhote-Alin region (Russia far east): Evidence from major, trace and rare earth elements geochemistry. Journal of Earth Science, 2015, 26(2): 259-272 DOI:10.1007/s12583-015-0531-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adachi M, Yamamoto K, Sugisaki R. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific: Their Geological Significance and Indication of Ocean Ridge Activity. Sediment Geol, 1986, 47: 125-148.

[2]

Barcelo D. Comprehensive Analytical Chemistry. Volume XLI. Elsevier Science. Amsterdam, the Netherlands, 2003, 1286.

[3]

Berger W H, Winterer E L. Plate Stratigraphy and Fluctuating Carbonate Line. Pelagic Sediments on Land and under the Sea. International Association of Sedimentologists, Special Publication, 1974, 1: 11-48.

[4]

Bersenev I I. Geology of the USSR. Primorye Region, 1969 Moskva: Nedra, 690.

[5]

Bragin N Y. Radiolarians and Low Mesozoic Strata of the East USSR, 1991 Moskva: Academiya Nauk SSSR, 125.

[6]

Calvert S E, Pedersen T F. Geochemistry of Recent Oxic and Anoxic Marine Sediments: Implications for the Geological Record. Marine Geology, 1993, 113: 67-88.

[7]

Chen D, Qing H, Yan X, . Hydrothermal Venting and Basin Evolution (Devonian, South China): Constraints from Rare Earth Element Geochemistry of Chert. Sedimentary Geology, 2006, 183(3–4): 203-216.

[8]

Dubinin A V. Geochemistry of Rare-Earth Elements in an Ocean, 2006 Moskva: Nauka, 310.

[9]

Elderfield H, Greaves M J. The Rare Earth Elements in Seawater. Nature, 1982, 296: 2-219.

[10]

Elderfield H, Hawkesworth C J, Greaves M J, . Rare Earth Element Geochemrstry of Oceanic Ferromanganese Nodules and Associated Sediments. Geochimica et Cosmochimica Acta, 1981, 45: 513-528.

[11]

Emerson S R, Huested S S. Ocean Anoxia and the Concentration of Molybdenum and Vanadium in Seawater. Marine Chemistry, 1991, 34: 177-196.

[12]

Engebretson DC, Cox A, Gordon RG. Relative Motion between Oceanic and Continental Plates in the Pacific Basin. Bull Geol. Soc. Amer., 1985, 206: 1-59.

[13]

German C R, Elderfield H. Application of the Ce Anomaly as a Paleoredox Indicator: The Ground Rules. Paleoceanography, 1990, 5: 823-833.

[14]

Gromet L P, Dymek R F, Haskin L A, . The “North American Shale Composite”, Its Compilation, Major and Trace Element Characteristics. Geochimica et Cosmochimica Acta, 1984, 48: 2469-2482.

[15]

Isozaki Y, Maruyama S, Furuoka F. Accreted Oceanic Materials in Japan. Tectonophysics, 1990, 181(1–2): 179-205.

[16]

Kakuwa Y, Matsumoto R. Cerium Negative Anomaly just before the Permian and Triassic Boundary Event—the Upward Expansion of Anoxia in the Water Column. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 229: 335-344.

[17]

Kametaka M, Takebe M, Nagai H, . Sedimentary Environments of the Middle Permian Phosphorite—Chert Complex from the Northeastern Yangtze Platform, China; the Gufeng Formation: A Continental Shelf Radiolarian Chert. Sedimentary Geology, 2005, 174: 197-222.

[18]

Kato Y, Nakao K, Isozaki Y. Geochemistry of Late Permian to Early Triassic Pelagic Cherts from Southwest Japan: Implications for an Oceanic Redox Change. Chemical Geology, 2002, 182: 15-34.

[19]

Kato Y, Ohta I, Tsunematsu T, . Rare Earth Element Variations in Mid-Archean Banded Iron Formations: Implications for the Chemistry of Ocean and Continent and Plate Tectonics. Geochimica et Cosmochimica Acta, 1998, 62(21–22): 3475-3497.

[20]

Kato Y, Yamaguchi K, Ohmoto H. Rare Earth Elements in Precambrian Banded Iron Formations: Secular Changes of Ce and Eu Anomalies and Evolution of Atmospheric Oxygen. Evolution of the Atmosphere, Hydrosphere, and Biosphere on Early Earth: Constraints from Ore Deposits. Geological Society of America Monograph, 2006, 198: 269-289.

[21]

Kazachenko V T, Perevoznikova E V, Lavrik S N, . Role of Ophiolites in Metallogeny of the Sikhote-Alin. Doklady of Russian Akademy of Sciences, 2012, 444(4): 412-416.

[22]

Kemkin I V. Geodynamic Evolution of the Sikhote-Alin and Sea of Japan Region in Mesozoic, 2006 Moskva.: Nauka, 258.

[23]

Kemkin I V, Filippov A N. Structure and Genesis of Lower Structural Unit of the Samarka Jurassic Accretionary Prism (Sikhote-Alin, Russia). Geodiversitas, 2001, 23(3): 323-339.

[24]

Kemkin I V, Filippov A N. The Structure and Formation of the Samarka Accretionary Prism in Southern Sikhote-Alin. Geotektonika, 2002, 36(5): 79-88.

[25]

Kemkin I V, Golozoubov V V. The First Finding of the Early Jurassic Radiolaria in Cherty Allochtnons of the Samarka Accretionary Prism (South Sikhote-Alin). Tikhookeanskaya Geologiya, 1996, 15(6): 103-109.

[26]

Kemkin I V, Kametaka M, Kojima S. Radiolarian Biostratigraphy for Transitional Facies of Chert-Clastic Sequence of the Taukha Terrane in the Koreyskaya River Area, Southern Sikhote-Alin, Russia. The Journal of Earth and Planetary Sciences Nagoya University, 1999, 46: 29-47.

[27]

Kemkin I V, Kametaka M, Kojima S. Faunal Evidence of Successive Accretion of the Taukha Terrane Paleooceanic Fragments (Southern Sikhote-Alin). Tikhookeanskaya Geologiya, 2001, 20(1): 72-84.

[28]

Kemkin I V, Kemkina R A. Structure and Genesis of the Taukha Mesozoic Accretionary Prism (Southern Sikhote-Alin, Russia). Geodiversitas, 2000, 22: 481-491.

[29]

Kemkin I V, Kemkina R A. Jurassic-Early Cretaceous Biostratigraphy of Chert-Terrigenous Deposits of Dalnegorsk Ores District (South Sikhote-Alin). Tikhookeanskaya Geologiya, 1998, 17: 59-76.

[30]

Kemkin I V, Roudenko V S. New Data on Chert Age of the Samarka Accretionary Prism, Southern Sikhote-Alin. Tikhookeanskaya Geologiya, 1998, 17(4): 22-31.

[31]

Kemkin I V, Roudenko V S, Taketani Y. Some Jurassic and Early Cretaceous Radiolarians from Chert-Terrigenous Sequence of the Taukha Terrane, Southern Sikhote-Alin. The Memoirs of the Geological Society of Japan, 1997, 48: 163-175.

[32]

Kemkin I V, Taketani Y. Structure and Age of Lower Structural Unit of the Taukha Terrane of Late Jurassic-Early Cretaceous Accretionary Prism, Southern Sikhote-Alin. The Island Arc, 2008, 17(4): 517-530.

[33]

Khanchuk A I. Geodynamics, Magmatism and Metallogeny of East of Russia, 2006 Vladivostok: Dal’nauka, 572.

[34]

Khanchuk A I, Kemkin I V. Geodynamic Evolution of Sea of Japan Region in Mesozoic. Bulletin of the Far Eastern Branch of the Russian Academy of Sciences, 2003, 6: 99-116.

[35]

Khanchuk A I, Kemkin I V, Panchenko I V. Geodynamic Evolution of the South Far East in Middle Paleozoic-Early Mesozoic. Pacific Margin of Asia. Geology, 1989, 1: 218-255.

[36]

Khanchuk A I, Nikitina A P, Panchenko I V, . Paleozoic and Mesozoic Guyots of the Sikhote-Alin and Sakhalin. Doklady Academy of Sciences of USSR, 1989, 307(1): 186-190.

[37]

Liu Y G, Miah M R U, Schmitt R A. Cerium: A Chemical Tracer for Paleo-Oceanic Redox Conditions. Geochimica et Cosmochimica Acta, 1988, 52: 1361-1371.

[38]

Liu Y G, Schmitt R A. Chemical Profiles in Sediment and Basalt Samples from DSDP Leg 74. Hole 525A. Walvis Ridge. Initial. Reports of DSDP, 1984, 74: 713-730.

[39]

Lyons T, Werne J P, Hollander D J, . Contrasting Sulfur Geochemistry and Fe/Al and Mo/Al Ratios across the Last Oxic-to-Anoxic Transition in the Cariaco Basin, Venezuela. Chemical Geology, 2003, 195: 131-157.

[40]

MacLeod K G, Irving A J. Correlation of Cerium Anomalies with Indicators of Paleoenvironment. Journal of Sedimentary Research, 1996, 66: 948-955.

[41]

Matsuda T, Isozaki Y. Well-Documented Travel History of Mesozoic Pelagic Chert in Japan: From Remote Ocean to Subduction Zone. Tectonics, 1991, 10(2): 475-499.

[42]

Morford J L, Emerson S. The Geochemistry of Redox Sensitive Trace Metals in Sediments. Geochimica et Cosmochimica Acta, 1999, 63: 1735-1750.

[43]

Murray R W. Chemical Criteria to Identify the Depositional Environment of Chert: General Principles and Applications. Sedimentary Geology, 1994, 90: 213-232.

[44]

Murray R W, Buchholtz ten Brink M R, Gerlach D C, . Rare Earth, Major, and Trace Elements in Chert from the Franciscan Complex and Monterey Group, California: Assessing REE Sources to Fine-Grained Marine Sediments. Geochimica et Cosmochimica Acta, 1991, 55: 1875-1895.

[45]

Murray R W, Buchholtz ten Brink M R, Jones D L, . Rare Earths Elements as Indicator of Different Marine Depositional Environments in Chert and Shale. Geology, 1990, 18: 268-272.

[46]

Popov N P, Stolyarova I N. Chemical Analysis of Rocks and Minerals, 1974 Moscow: Nedra, 248.

[47]

Ruhlin D E, Owen R M. The Rare Earth Element Geochemistry of Hydrothermal Sediments from the East Pacific Rise: Examination of a Seawater Scavenging Mechanism. Geochimica et Cosmochimica Acta, 1986, 50: 393-400.

[48]

Shimizu H, Masuda A. Cerium in Chert as an Indication of Marine Environment of Its Formation. Nature, 1977, 266: 346-348.

[49]

Sholkovitz E R, Landing W M, Lewis B L. Ocean Particle Chemistry: The Fractionation of Rare Earth Elements between Suspended Particles and Seawater. Geochimica et Cosmochimica Acta, 1994, 58: 1567-1579.

[50]

Simanenko V P, Golozoubov V V, Kemkin I V. Basalts of the Erdagou Suite in the Taukha Terrane of the Soutern Sikhote-Alin and Its Geodynamic Setting. Tikhookeanskaya Geologiya, 1999, 18(4): 82-90.

[51]

Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution, 1985 Oxford: Blackwell Scientific Publications, 312.

[52]

Thomson J, Higgs N C, Croudace I W, . Redox Zonation of Elements at an Oxic/Post-Oxic Boundary in Deep-Sea Sediments. Geochimica et Cosmochimica Acta, 1993, 57: 579-595.

[53]

Toyoda K, Nakamura Y, Masuda A. Rare Earth Elements of Pacific Pelagic Sediments. Geochimica et Cosmochimica Acta, 1990, 54: 1093-l103.

[54]

Tribovillard N, Algeo T J, Lyons T, . Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 2006, 232: 12-32.

[55]

Volokhin J G, Mikhaylik E V. Zakharov J D, Markevich PV. Structure, Composition and Formation Conditions of the Middle-Late Jurassic Chert Formation. Triassic and Jurassic of the Sikhote-Alin, 2008 Vladivostok: Dal’nauka, 103-124.

[56]

Volokhin J G, Mikhaylik E V, Buriy G I. Triassic Chert Formation of the Sikhote-Alin, 2003 Vladivostok: Dal’nauka, 252.

[57]

Wright J, Schrader H, Holser W T. Paleoredox Variations in Ancient Oceans Recorded by Rare Earth Elements in Fossil Apatite. Geochimica et Cosmochimica Acta, 1987, 51: 631-644.

[58]

Zhang C, Zhou D, Lu G, . Geochemical Characteristic and Sedimentary Environments of Cherts from Kumishi Ophiolitic Mélange in Southern Tianshan. Acta Petrologica Sinica, 2006, 22(1): 57-64.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/