The mysterious Mid-Carnian “Wet Intermezzo” global event

James G. Ogg

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (2) : 181 -191.

PDF
Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (2) : 181 -191. DOI: 10.1007/s12583-015-0527-x
Article

The mysterious Mid-Carnian “Wet Intermezzo” global event

Author information +
History +
PDF

Abstract

Approximately 230 million years ago in the middle of the Carnian stage of the Upper Triassic, the sedimentary records in different regional basins display dramatic changes. Tropical carbonate platforms abruptly ended, and engorged river systems left widespread sand-rich layers across inland basins and coastal regions. This pulse lasted less than a million years in some basins, but constituted a permanent shift in others. Following this event, the Late Carnian has the earliest record of significant dinosaurs on land and the emergence of the calcareous nannoplankton in the oceans that now govern Earth’s carbon cycle. This “most distinctive climate change within the Triassic” has been interpreted by some geoscientists as a global disruption of the Earth’s land-ocean-biological system. The eruption of the Wrangellia large igneous province may have been the trigger for a sudden carbon-dioxide-induced warming and associated increased rainfall in some of these regions. Indeed, some workers have proposed that this “wet intermezzo” warming event is a useful analog to aid in predicting the effects of our future greenhouse on land ecosystems and ocean chemistry. However, the understanding of the onset, duration, global impacts and relatively rapid termination of this postulated warming pulse has been hindered by lack of a global dataset with inter-calibrated terrestrial and marine biostratigraphy, precise radio-isotopic ages, stable isotope records of temperature and the carbon system, and cycle-calibrated rates of regional and global change.

Keywords

Triassic / Carnian / climate / pluvial / Wrangellia / carbon / isotope / excursion / dolomite / China / LIP / Yangtze Platform / Wet Intermezzo / large igneous province

Cite this article

Download citation ▾
James G. Ogg. The mysterious Mid-Carnian “Wet Intermezzo” global event. Journal of Earth Science, 2015, 26(2): 181-191 DOI:10.1007/s12583-015-0527-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Algeo T J, Twitchett R J. Anomalous Early Triassic Sediment Fluxes Due to Elevated Weathering Rates and Their Biological Consequences. Geology, 2010, 38: 1023-1026.

[2]

Arche A, Lópex-Gómez J. The Carnian Pluvial Event in Western Europe: New Data from Iberia and Correlation with the Western Neotethys and Eastern North America-NW Africa Regions. Earth-Science Reviews, 2014, 128: 196-231.

[3]

Balini M, Lucas S G, Jenks J F, . Triassic Ammonoid Biostratigraphy: An Overview: Geological Society. London, Special Publications, 2010, 334: 221-262.

[4]

Benton M J, Forth J, Langer M C. Models for the Rise of the Dinosaurs. Current Biology, 2014, 24: R87-R95.

[5]

Bosellini A, Gianolla P, Stefani M. Geology of the Dolomites. Episodes, 2003, 26: 181-185.

[6]

Bown P R. Calcareous Nannofossil Biostratigraphy, 1998 Dordrecht: Kluwer Academic

[7]

Bradley D C. Passive Margins through Earth History. Earth-Science Reviews, 2008, 91: 1-26.

[8]

Bragin N Y, Konstantinov A G, Sobolev E S. Upper Triassic Stratigraphy and Paleobiogeography of Kotel’nyi Island (New Siberian Islands). Stratigraphy and Geological Correlation, 2012, 20: 541-566.

[9]

Dal Corso J, Mietto P, Newton R J, . Discovery of a Major 13C Spike in the Carnian (Late Triassic) Linked to the Eruption of Wrangellia Flood Basalts. Geology, 2012, 40: 79-82.

[10]

Enos P, Lehrmann D J, Wei J Y, . Triassic Evolution of the Yangtze Platform in Guizhou Province, People’s Republic of China. Geological Society of America Special Paper, 2006, 417: 1-105.

[11]

Erba E. Nannofossils and Superplumes: The Early Aptian Nannoconid Crisis. Paleoceanography, 1994, 9: 483-501.

[12]

Erba E. Calcareous Nannofossils and Mesozoic Oceanic Anoxic Events. Marine Micropaleontology, 2004, 52: 85-106.

[13]

Gattolin G, Breda A, Preto N. Demise of Late Triassic Carbonate Platforms Triggered the Onset of a Tide-Dominated Depositional System in the Dolomies, Northern Italy. Sedimentary Geology, 2013, 297: 38-49.

[14]

Gianolla P, De Zanche V, Mietto P. Triassic Sequence Stratigraphy in the Southern Alps (Northern Italy): Definition of Sequences and Basin Evolution. Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. SEPM Special Publication, 1998, 60: 719-748.

[15]

Greene A R, Scoates J S, Weis D, . The Architecture of Oceanic Plateaus Revealed by the Volcanic Stratigraphy of the Accreted Wrangellia Oceanic Plateau. Geosphere, 2010, 6: 47-73.

[16]

Haq B U, Al-Qahtani A M. Phanerozoic Cycles of Sea-Level Change on the Arabian Platform. GeoArabia, 2005, 10: 127-160.

[17]

Hardenbol J, Thierry J, Farley M B, . Mesozoic and Cenozoic Sequence Chronostratigraphic Framework of European Basins. Mesozoic-Cenozoic Sequence Stratigraphy of European Basins. SEPM Special Publication, 1998, 60: 763-781.

[18]

Hesselbo S P, Robinson S A, Surlyk F, . Terrestrial and Marine Extinction at the Triassic-Jurassic Boundary Synchronized with Major Carbon-Cycle Perturbation: A Link to Initiation of Massive Volcanism?. Geology, 2002, 30: 251-254.

[19]

Hochuli P A, Vigran J O. Climate Variations in the Boreal Triassic—Inferred from Palynological Records from the Barents Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 290: 20-42.

[20]

Hornung T, Brandner R. Biochronostratigraphy of the Reingraben Turnover (Hallstatt Facies Belt): Local Black Shale Events Controlled by Regional Tectonics, Climatic Change and Plate Tectonics. Facies, 2005, 51: 460-479.

[21]

Hornung T, Brandner R, Krystyn L, . Multistratigraphic Constraints on the NW Tethyan “Carnian Crisis”. The Global Triassic, New Mexico Museum of Natural History and Science Bulletin, 2007, 41: 59-67.

[22]

Hounslow M K, Muttoni G. The Geomagnetic Polarity Timescale for the Triassic: Linkage to Stage Boundary Definitions. The Geological Society, London, Special Publication, 2010, 334: 61-102.

[23]

Jenkyns H C. Geochemistry of Oceanic Anoxic Events. Geochemistry, Geophysics, Geosystems, 2010, 11 Q03004

[24]

Kemp D B, Coe A L, Cohen A S, . Astronomical Pacing of Methane Release in the Early Jurassic Period. Nature, 2005, 437: 396-399.

[25]

Korte C, Kozur H W, Bruckschen P, . Strontium Isotope Evolution of Late Permian and Triassic Seawater. Geochimica et Cosmochimica Acta, 2003, 67: 47-62.

[26]

Korte C, Kozur H W, Veizer J. δ13C and δ18O Values of Triassic Brachiopods and Carbonate Rocks as Proxies for Coeval Seawater and Palaeotemperature. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 226: 287-306.

[27]

Kozur H W. Some Aspects of the Permian-Triassic Boundary (PTB) and of the Possible Causes for the Biotic Crisis around this Boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 143: 227-272.

[28]

Kozur H W, Bachmann G H. Updated Correlation of the German Triassic with the Tethyan Scale and Assigned Numeric Ages. Upper Triassic Subdivisions, Zonations and Events. Berichte der Geologischen Bundesanstalt, 2008, 76: 53-58.

[29]

Kozur H W, Bachmann G H. The Middle Carnian Wet Intermezzo of the Stuttgart Formation (Schilfsandstein), Germanic Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 290: 107-119.

[30]

Kozur H W, Weems R E. The Biostratigraphic Importance of Conchostracans in the Continental Triassic of the Northern Hemisphere. The Triassic Timescale. Geological Society, London, Special Publications, 2010, 334: 315-417.

[31]

Kozur H. Probleme der Triasgliederung und Parallelisierung der Germanischen und Tethyalen Trias. Teil II: Anschluss der Germanischen Trias an Die International Triasgliederung. Freiburg Forschungshefte, 1975, C304: 51-77.

[32]

Kutzbach J E, Gallimore R G. Pangaean Climates: Megamonsoons of the Megacontinent. Journal of Geophysical Research, 1989, 94: 3341-3357.

[33]

Lehrmann D J, Enos P, Jonathan L P, . Permian and Triassic Depositional History of the Yangtze Platform and Great Bank of Guizhou in the Nanpanjiang Basin of Guizhou and Guangxi, South China. Albertiana, 2005, 33: 149-169.

[34]

Li Y, Allen P A, Densmore A L, . Evolution of the Longmen Shan Foreland Basin (Western Sichuan, China) during the Late Triassic Indosinian Orogeny. Basin Research, 2003, 15: 117-138.

[35]

Li Y, Yan Z, Liu S, . Migration of the Carbonate Ramp and Sponge Buildup Driven by the Orogenic Wedge Advance in the Early Stage (Carnian) of the Longmen Shan Foreland Basin, China. Tectonophysics, 2014, 619/620: 179-193.

[36]

Lucas S G, Heckert A B, Estep J W, . Stratigraphy of the Upper Triassic Chinle Group, Four Corners Region. Mesozoic Geology and Paleontology of the Four Corners Region. New Mexico Geological Society Guidebook, 48th Field Conference, New Mexico, 1997, 81-107.

[37]

Lucas S G, Tanner L H, Kozur H W, . The Late Triassic Timescale: Age and Correlation of the Carnian-Norian Boundary. Earth-Science Reviews, 2012, 114: 1-18.

[38]

McArthur J M, Algeo T J, van de Schootbrugge B, . Basinal Restriction, Black Shales, Re-Os Dating, and the Early Toarcian (Jurassic) Oceanic Anoxic Event. Paleoceanography, 2008, 23 PA4217

[39]

McArthur J M, Howarth R J, Shields G A, . Gradstein F M, Ogg J G, Schmitz M D, . Strontium Isotope Stratigraphy. The Geologic Time Scale 2012, 2012, 127-144.

[40]

Montgomery P, Enos P, Lehrmann D, . Post Mortem in Guizhou: Rates and Reasons for Post-Drowning Deposition. AAPG Annual Meeting, May 11–14, 2003, Salt Lake City, Utah, 2005

[41]

Muttoni G, Mazza M, Mosher D, . A Middle-Late Triassic (Ladinian-Rhaetian) Carbon and Oxygen Isotope Record from the Tethyan Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399: 246-259.

[42]

Nakada R, Ogawa K, Suzuki N, . Late Triassic Compositional Changes of Aeolian Dusts in the Pelagic Panthalassa: Response to the Continental Climate Change. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 393: 61-75.

[43]

Ogg J G, . Gradstein F M, Ogg J G, Schmitz M D, . Triassic. The Geologic Time Scale 2012, 2012, 681-730.

[44]

Ogg J G, Huang C, Hinnov L. Triassic Timescale Status: A Brief Overview. Albertiana, 2014, 41: 2-30.

[45]

Parrish J T. Climate of Supercontinent Pangea. Journal of Geology, 1993, 101: 215-233.

[46]

Preto N, Agnini C, Rigo M, . The Calcareous Nannofossil Prinsiophaera Achieved Rock-Forming Abundances in the Latest Triassic of Western Tethya; Consequences for the δ13C of Bulk Carbonate. Biogeosciences, 2013, 10: 6053-6068.

[47]

Preto N, Willems H, Guaiumi C, . Onset of Significant Pelagic Carbonate Accumulation after the Carnian Pluvial Event (CPE) in the Western Tethys. Facies, 2013, 59: 891-914.

[48]

Preto N, Hinnov L A. Unraveling the Origin of Carbonate Platform Cyclothems in the Upper Triassic Durrenstein Formation (Dolomites, Italy). Journal of Sedimentary Research, 2003, 73: 774-789.

[49]

Preto N, Kustatscher E, Wignall P B. Triassic Climates—State of the Art and Perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 290: 1-10.

[50]

Roghi G, Gianolla P, Minarelli L, . Palynological Correlation of Carnian Humid Pulses throughout Western Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 290: 89-106.

[51]

Schlager W, Schöllnberger W. Das Prinzip Stratigraphischer Wenden in der Schichtfolge der Nördlichen Kalkalpen. Mitteilungen. Österreichische Geologische Gesellschaft Wien, 1974, 66/67: 165-193.

[52]

Shi Z Q, Ou L, Luo F, . Black Shale Event during the Late Triassic Carnian Age: Implications of Sedimentary and Palaeontological Records in Longmen Mountains Region. Journal of Palaeogeography, 2009, 11: 375-383.

[53]

Shuckla U K, Bachmann G H, Singh I B. Facies Architecture of the Stuttgart Formaion (Schilfsandstein, Upper Triassic), Central Germany, and its Comparison with Modern Ganga System, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 297: 110-128.

[54]

Simms M J, Ruffell A H. Synchroneity of Climatic Change and Extinctions in the Late Triassic. Geology, 1989, 17: 265-268.

[55]

Simms M J, Ruffell A H. Climate and Biologic Change in the Late Triassic. Journal of the Geological Society of London, 1990, 147: 321-327.

[56]

Wang X F, Bachmann G H, Hagdorn H, . The Late Triassic Black Shales of the Guanling Area, Guizhou Province, South-West China: A Unique Marine Reptile and Pelagic Crinoid Fossil Lagerstätte. Palaeontology, 2008, 51(Pt.1): 27-61.

[57]

Wignall P B. Large Igneous Provinces and Mass Extinctions. Earth-Science Reviews, 2001, 53: 1-33.

[58]

Xia H D, Chen X H, Deng H J. Intergraded Litho-Bio-Chrono—and Chemical Stratigraphy of the Upper Triassic Xiaowa Formation from Southwestern Margin of Yangtze Platform and Their Implication for the Environment of the Guanling Biota. Geological Science and Technology Information, 2013, 32(4): 14-18.

[59]

Xu G, Hannah J L, Stein H J M, . Cause of Upper Triassic Climate Crisis Revealed by Re-Os Geochemistry of Boreal Black Shales. Palaeogeography, Palaeoclimatology, Palaeooecolocy, 2014, 95: 22-232.

[60]

Yin H F, Feng Q L, Xie S C, . Recent Achievements on the Research of the Paleozoic-Mesozoic Transitional Period in South China. Earth Science Frontiers, 2007, 1: 129-141.

[61]

Yin H F, Zhang K X, Tong J N, . The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary. Episodes, 2001, 24: 102-114.

[62]

Zhang Y, Li M, Ogg JG, . Cycle-Calibrated Magnetostratigraphy of Middle Carnian: Implications for the Late Triassic Time Scale and Termination of the Yangtze Platform. Earth and Planetary Science Letters, 2015

AI Summary AI Mindmap
PDF

553

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/