Lattice solid/Boltzmann microscopic model to simulate solid/fluid systems—A tool to study creation of fluid flow networks for viable deep geothermal energy

Peter Mora , Yucang Wang , Fernando Alonso-Marroquin

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (1) : 11 -19.

PDF
Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (1) : 11 -19. DOI: 10.1007/s12583-015-0516-0
Special Issue on Geohtermal Energy

Lattice solid/Boltzmann microscopic model to simulate solid/fluid systems—A tool to study creation of fluid flow networks for viable deep geothermal energy

Author information +
History +
PDF

Abstract

Realizing the potential of geothermal energy as a cheap, green, sustainable resource to provide for the planet’s future energy demands that a key geophysical problem be solved first: how to develop and maintain a network of multiple fluid flow pathways for the time required to deplete the heat within a given region. We present the key components for micro-scale particle-based numerical modeling of hydraulic fracture, and fluid and heat flow in geothermal reservoirs. They are based on the latest developments of ESyS-Particle—the coupling of the lattice solid model (LSM) to simulate the nonlinear dynamics of complex solids with the lattice Boltzmann method (LBM) applied to the nonlinear dynamics of coupled fluid and heat flow in the complex solid-fluid system. The coupled LSM/LBM can be used to simulate development of fracture systems in discontinuous media, elastic stress release, fluid injection and the consequent slip at joint surfaces, and hydraulic fracturing; heat exchange between hot rocks and water within flow pathways created through hydraulic fracturing; and fluid flow through complex, narrow, compact and gouge-or powder-filled fracture and joint systems. We demonstrate the coupled LSM/LBM to simulate the fundamental processes listed above, which are all components for the generation and sustainability of the hot-fractured rock geothermal energy fracture systems required to exploit this new green-energy resource.

Keywords

lattice Boltzmann particle-fluid interaction / geothermal energy / coupled lattice solid/lattice Boltzmann model / discrete element method / lattice solid model

Cite this article

Download citation ▾
Peter Mora, Yucang Wang, Fernando Alonso-Marroquin. Lattice solid/Boltzmann microscopic model to simulate solid/fluid systems—A tool to study creation of fluid flow networks for viable deep geothermal energy. Journal of Earth Science, 2015, 26(1): 11-19 DOI:10.1007/s12583-015-0516-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abe S, Mora P. Efficient Implementation of Complex Particle Shapes in the Lattice Solid Model. Lecture Notes in Computer Science, 2003, 2659: 883-891.

[2]

Abe S, Mora P, Place D. Extension of the Lattice Solid Model to Incorporate Temperature Related Effects. Pure Appl. Geophys., 2000, 157: 1867-1887.

[3]

Abe S, Place D, Mora P. A Parallel Implementation of the Lattice Solid Model for the Simulation of Rock Mechanics and Earthquake Dynamics. Pure Appl. Geophys., 2004, 161(11–12): 2265-2277.

[4]

Alonso-Marroquin F, Pena A, Mora P, . Simulation of Shear Bands Using a Discrete Model with Polygonal Particles. Discrete Element Methods Conference, Brisbane, 2007, 6-11.

[5]

Alonso-Marroquin F, Vardoulakis I, Herrmann H J, . The Effect of Rolling on Dissipation in Fault Gouges. Phys. Rev. E., 2006, 74 1 031306

[6]

Alonso-Marroquín F, Wang Y C. An Efficient Algorithm for Granular Dynamics Simulations, with Complex-Shaped Objects. Granular Matter, 2009, 11: 317-329.

[7]

Chen S, Doolen G. Lattice Boltzmann Method for Fluid Flows. Anu. Rev. Fluid Mech., 1998, 30: 329-364.

[8]

Gingold R A, Monaghan J J. Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars. Mon. Not. R. Astron. Soc., 1977, 181: 375-389.

[9]

Guo Z, Zheng C, Shi B, . Thermal Lattice Boltzmann Equation for Low Mach Number Flows: Decoupling Model. Phys. Rev. E, 2007, 75 3 036704

[10]

He X, Chen S, Doolen G D. A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit. J. Comp. Phys., 1998, 146: 282-300.

[11]

Hung L H, Yang J Y. A Coupled Lattice Boltzmann Model for Thermal Flows. IMA J. Appl. Math., 2011, 76(5): 774-789.

[12]

Khanal M, Schubert W, Tomas J. Compression and Impact Loading Experiments of High Strength Spherical Composites. Int. J. Miner. Process, 2008, 86: 104-113.

[13]

Komoróczi A, Abe S, Urai J L. Meshless Numerical Modeling of Brittle-Viscous Deformation: First Results on Boudinage and Hydro-fracturing Using a Coupling of Discrete Element Method (DEM) and Smoothed Particle Hydrodynamics (SPH). Comput. Geosci., 2013, 17: 373-390.

[14]

Latham S, Abe S, Mora P. Parallel 3D Simulation of a Fault Gouge Using the Lattice Solid Model. Pure Appl. Geophys., 2005, 163(9): 1949-1964.

[15]

Mair K, Abe S. 3D Numerical Simulations of Fault Gouge Evolution during Shear: Grain Size Reduction and Strain Localization. Earth and Planetary Science Letters, 2008, 274(1–2): 72-81.

[16]

Mora P. A Lattice Solid Model for Rock Rheology and Tectonics. The Seismic Simulation Project Tech. Rep., Institut de Physique du Globe, Paris., 1992, 4: 3-28.

[17]

Mora P, Place D. A Lattice Solid Model for the Nonlinear Dynamics of Earthquakes. Int. J. of Modern Phys. C, 1993, 4: 1059-1074.

[18]

Mora P, Place D. Simulation of the Frictional Stick-Slip Instability. Pure Appl. Geophys., 1994, 143: 61-87.

[19]

Mora P, Place D. Numerical Simulation of Earthquake Faults with Gouge: Towards a Comprehensive Explanation for the Heat Flow Paradox. J. Geophys. Res., 1998, 103: 21067-21089.

[20]

Mora P, Place D. The Weakness of Earthquake Faults. Geophys. Res. Lett., 1999, 26: 123-126.

[21]

Mora P, Place D. Stress Correlation Function Evolution in Lattice Solid Elasto-Dynamic Models of Shear and Fracture Zones and Earthquake Prediction. Pure Appl. Geophys., 2002, 159: 2413-2427.

[22]

Mora P, Place D, Abe S, . Rundle J B, Turcotte D L, Klein W, . Lattice Solid Simulation of the Physics of Earthquakes: The Model, Results and Directions. GeoComplexity and the Physics of Earthquakes, 2000 Washington D.C.: American Geophys. Union, 105-125.

[23]

Mora P, Place D, Zeng Y. The Effect of Gouge on Fault Strength and Dynamics. Proc. Symposium on Localization Phenomena and Granular Systems, Earth Institute/Lamont-Doherty Earth Observatory, 1997 New York: Columbia University, 67-73.

[24]

Mora P, Wang Y C, Yin C, . Simulation of the Load-Unload Response Ratio and Critical Sensitivity in the Lattice Solid Model. Pure Appl. Geophys., 2002, 159: 2525-2536.

[25]

Place D, Lombard F, Mora P, . Simulation of the Micro-Physics of Rocks Using LS-Mearth. Pure Appl. Geophys., 2002, 159: 1911-1932.

[26]

Place D, Mora P. The Lattice Solid Model to Simulate the Physics of Rocks and Earthquakes: Incorporation of Friction. J. Comp. Phys., 1999, 1502: 332-372.

[27]

Place D, Mora P. Numerical Simulation of Localisation Phenomena in a Fault Zone. Pure Appl. Geophys., 2000, 157: 1821-1845.

[28]

Place D, Mora P. Muhlhaus H B, Dyskin A V, Pasternak E. A Random Lattice Solid Model for Simulation of Fault Zone Dynamics and Fracture Process. Bifurcation and Localization Theory for Soil and Rock’99, 2001 Rotterdam/Brookfield: AA Balkema

[29]

Wang Y C. A New Algorithm to Model the Dynamics of 3-D Bonded Rigid Bodies with Rotations. Acta Geotechnica, 2009, 4: 117-127.

[30]

Wang Y C, Abe S, Latham S, . Implementation of Particle-Scale Rotation in the 3D Lattice Solid Model. Pure Appl. Geophys., 2006, 163: 1769-1785.

[31]

Wang Y C, Alonso-Marroquin F. DEM Simulation of Rock Fragmentation and Size Distribution under Quasi-Static and Dynamic Loading Conditions. The first Southern Hemisphere International Rock Mechanics Symposium. The Australian Centre for Geomechanics, Perth., 2008, 16-19.

[32]

Wang Y C, Alonso-Marroquin F. A Finite Deformation Method for Discrete Modeling: Particle Rotation and Parameter Calibration. Granular Matter, 2009, 11: 331-343.

[33]

Wang Y C, Mora P. Elastic Properties of Regular Lattices. J. Mech. Phys. Solids, 2008, 56: 3459-3474.

[34]

Wang Y C, Mora P. Modelling Wing Crack Extension: Implications to the Ingredients of Discrete Element Model. Pure Appl. Geophys., 2008, 165: 609-620.

[35]

Wang Y C, Mora P. Xing H L. ESyS-Particle: A New 3-D Discrete Element Model with Single Particle Rotation. Advances in Geocomputing, 2009, 183-228.

[36]

Xing H L, Mora P. Construction of an Intraplate Fault System Model of South Australia, and Simulation Tool for the iSERVO Institute Seed Project. Pure Appl. Geophys., 2006, 163: 2297-2316.

[37]

Yu D, Mei R, Luo L, . Viscous Flow Computations with the Method of Lattice Boltzmann Equation. Proc. Aerospace Sci., 2003, 39: 329-367.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/