Deep geothermal: The ‘Moon Landing’ mission in the unconventional energy and minerals space

Klaus Regenauer-Lieb , Andrew Bunger , Hui Tong Chua , Arcady Dyskin , Florian Fusseis , Oliver Gaede , Rob Jeffrey , Ali Karrech , Thomas Kohl , Jie Liu , Vladimir Lyakhovsky , Elena Pasternak , Robert Podgorney , Thomas Poulet , Sheik Rahman , Christoph Schrank , Mike Trefry , Manolis Veveakis , Bisheng Wu , David A. Yuen , Florian Wellmann , Xi Zhang

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (1) : 2 -10.

PDF
Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (1) : 2 -10. DOI: 10.1007/s12583-015-0515-1
Special Issue on Geohtermal Energy

Deep geothermal: The ‘Moon Landing’ mission in the unconventional energy and minerals space

Author information +
History +
PDF

Abstract

Deep geothermal from the hot crystalline basement has remained an unsolved frontier for the geothermal industry for the past 30 years. This poses the challenge for developing a new unconventional geomechanics approach to stimulate such reservoirs. While a number of new unconventional brittle techniques are still available to improve stimulation on short time scales, the astonishing richness of failure modes of longer time scales in hot rocks has so far been overlooked. These failure modes represent a series of microscopic processes: brittle microfracturing prevails at low temperatures and fairly high deviatoric stresses, while upon increasing temperature and decreasing applied stress or longer time scales, the failure modes switch to transgranular and intergranular creep fractures. Accordingly, fluids play an active role and create their own pathways through facilitating shear localization by a process of time-dependent dissolution and precipitation creep, rather than being a passive constituent by simply following brittle fractures that are generated inside a shear zone caused by other localization mechanisms. We lay out a new theoretical approach for the design of new strategies to utilize, enhance and maintain the natural permeability in the deeper and hotter domain of geothermal reservoirs. The advantage of the approach is that, rather than engineering an entirely new EGS reservoir, we acknowledge a suite of creep-assisted geological processes that are driven by the current tectonic stress field. Such processes are particularly supported by higher temperatures potentially allowing in the future to target commercially viable combinations of temperatures and flow rates.

Keywords

geothermal energy / enhanced geothermal systems / fracture mechanics / creep / dissolution / precipitation

Cite this article

Download citation ▾
Klaus Regenauer-Lieb, Andrew Bunger, Hui Tong Chua, Arcady Dyskin, Florian Fusseis, Oliver Gaede, Rob Jeffrey, Ali Karrech, Thomas Kohl, Jie Liu, Vladimir Lyakhovsky, Elena Pasternak, Robert Podgorney, Thomas Poulet, Sheik Rahman, Christoph Schrank, Mike Trefry, Manolis Veveakis, Bisheng Wu, David A. Yuen, Florian Wellmann, Xi Zhang. Deep geothermal: The ‘Moon Landing’ mission in the unconventional energy and minerals space. Journal of Earth Science, 2015, 26(1): 2-10 DOI:10.1007/s12583-015-0515-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abe H, Niitsuma H, Murphy H. Summary of Discussions, Structured Academic Review of HDR/HWR Reservoirs. Geothermics, 1999, 28: 671-676.

[2]

Alevizos S, Poulet T, Veveakis E. Thermo-Poro-Mechanics of Chemically Active Creeping Faults: 1. Theory and Steady State Considerations. Journal of Geophysical Research: Solid Earth, 2014, 119(6): 4558-4582.

[3]

Ashby M F, Gandhi C, Taplin D M R. Overview No. 3. Acta Metallurgica, 1979, 27: 699-729.

[4]

Brown D, DuTeaux R, Kruger P, . Fluid Circulation and Heat Extraction from Engineered Geothermal Reservoirs. Geothermics, 1999, 28: 553-572.

[5]

Bunger A P, Zhang X, Jeffrey R. Parameters Affecting the Interaction among Closely Spaced Hydraulic Fractures. SPE Journal, 2012, 17: 292-306.

[6]

Cuderman J F, Cooper P W, Chen E P, . A Multiple Fracturing Technique for Enhanced Gas Recovery, 1981 Los Angeles: International Gas Conference

[7]

Dyskin A, Pasternak E, . Potvin Y, Carter J, Dyskin A, . Rotational Mechanism of In-Plane Shear Crack Growth in Rocks under Compression. 1st Southern Hemisphere International Rock Mechanics Symposium SHIRMS 2008, 2008, 111-120.

[8]

Dyskin A, Pasternak E. Maugin G, Metrikine A. Cracks in Cosserat Continuum-Macroscopic Modelling. Mechanics of Generalized Continua: One Hundred Years after the Cosserats, 2010 New York: Springer, 35-42.

[9]

Dyskin A, Pasternak E. Mechanism of In-Plane Fracture Growth in Particulate Materials Based on Relative Particle Rotations. Proc. 13th International Conference on Fracture, Bejing, 2013, S09-003.

[10]

Dyskin, A., Pasternak, E., 2014. Energy Criterion of In-Plane Fracture Propagation in Geomaterials with Rotating Particles. Proc. IWBDG, 14-27

[11]

Dyskin A, Pasternak E, Bunger A, . Bunger A P, McLennan J, Jeffrey R, . Blue Shift in the Spectrum of Arrival Times of Acoustic Signals Emitted during Laboratory Hydraulic Fracturing. The International Conference for Effective and Sustainable Hydraulic Fracturing., 2013, 467-476.

[12]

Fowler A C, Yang X S. Dissolution/Precipitation Mechanisms for Diagenesis in Sedimentary Basins. Journal of Geophysical Research: Solid Earth, 2003, 108 2509

[13]

Fusseis F, Regenauer-Lieb K, Liu J, . Creep Cavitation can Establish a Granular Fluid Pump through the Middle Crust. Nature, 2009, 459: 974-977.

[14]

Gaede O, Karrech A, Regenauer-Lieb K. Anisotropic Damage Mechanics as a Novel Approach to Improve Pre- and Post-Failure Borehole Stability Analysis. Geophysical Journal International, 2013, 193: 1095-1109.

[15]

Genter A, Evans K, Cuenot N, . Contribution of the Exploration of Deep Crystalline Fractured Reservoir of Soultz to the Knowledge of Enhanced Geothermal Systems (EGS). Comptes Rendus Geoscience, 2010, 342: 502-516.

[16]

Ghandi C, Ashby M F. Overview No. 5 Fracture-Mechanism Maps for Materials which Cleave: F. C. C., B. C. C. and H. C. P. Metals and Ceramics. Acta Metallurgica, 1979, 27: 1565-1602.

[17]

Gratier J P, Dysthe D, Renard F. The Role of Pressure Solution Creep in the Ductility of the Earth’s Upper Crust. Advances in Geophysics, 2013, 54: 47-179.

[18]

Haimson B. Micromechanisms of Borehole Instability Leading to Breakouts in Rocks. International Journal of Rock Mechanics & Mining Sciences, 2006, 44(2): 157-173.

[19]

Karrech A, Regenauer-Lieb K, Poulet T. Continuum Damage Mechanics for the Lithosphere. Journal of Geophysical Research, 2011, 116 B04205

[20]

Karrech A, Schrank C, Freij-Ayoub R, . A Multi-Scaling Approach to Predict Hydraulic Damage of Poromaterials. International Journal of Mechanical Sciences, 2014, 78: 1-7.

[21]

Liu J, Karrech A, Regenauer-Lieb K. Combined Mechanical and Melting Damage Model for Geomaterials. Geophysical Journal International, 2014, 198(3): 1319-1328.

[22]

Pasternak E, Dyskin A. Frequency Signatures of Damage Localisation. Philosophical Magazine, 2012, 92: 3665-3679.

[23]

Pasternak E, Dyskin A. Intermediate Asymptotics for Scaling of Stresses at the Tip of Crack in Cosserat Continuum.. 12th Intern. Conf. Fracture ICF12, 2012

[24]

Pasternak E, Dyskin A. Spectral Indicator of Microseismic Localisation. Proc. Rock Engineering & Technology for Sustainable Underground Construction, 2012

[25]

Poulet T, Veveakis E, Regenauer-Lieb K, . Thermo-Poro-Mechanics of Chemically Active Creeping Faults: 3. The Role of Serpentinite in Episodic Tremor and Slip Sequences, and Transition to Chaos. Journal of Geophysical Research: Solid Earth, 2014, 119(6): 4606-4625.

[26]

Raj R. Creep in Polycrystalline Aggregates by Matter Transport through a Liquid Phase. Journal of Geophysical Research: Solid Earth, 1982, 87: 4731-4739.

[27]

Raj R. Intergranular Creep Fracture in Aggressive Environnments. Acta Metallurgica, 1982, 30: 1259-1268.

[28]

Regenauer-Lieb K. Dilatant Plasticity Applied to Alpine Collision: Ductile Void Growth in the Intraplate Area beneath the Eifel Volcanic Field. Journal of Geodynamics, 1999, 27: 1-21.

[29]

Regenauer-Lieb K, Veveakis M, Poulet T, . Multiscale Coupling and Multiphysics Approaches in Earth Sciences: Applications. Journal of Coupled Systems and Multiscale Dynamics, 2013, 1(3): 281-323.

[30]

Regenauer-Lieb K, Veveakis M, Poulet T, . Multiscale Coupling and Multiphysics Approaches in Earth Sciences: Theory. Journal of Coupled Systems and Multiscale Dynamics, 2013, 1(1): 49-73.

[31]

Regenauer-Lieb K, Yuen D, Fusseis F. Landslides, Ice Quakes, Earthquakes: A Thermodynamic Approach to Surface Instabilities. Pure and Applied Geophysics, 2009, 166: 1-24.

[32]

Rybacki E, Wirth R, Dresen G. High-Strain Creep of Feldspar Rocks: Implications for Cavitation and Ductile Failure in the Lower Crust. Geophysical Research Letters, 2007, 35 L04304.

[33]

Schrank C, Fusseis F, Karrech A, . Thermal-Elastic Stresses and the Criticality of the Continental Crust. Geochemistry, Geophysics, Geosystems, 2012, 13 Q09005

[34]

Somerville, M., Wyborn, D., Chopra, P., et al., 1994. Hot Dry Rock Feasibility Study. Energy Research & Development Corporation, ERDC Report. 133

[35]

Veveakis E, Poulet T, Alevizos S. Thermo-Poro-Mechanics of Chemically Active Creeping Faults: 2. Transient Considerations. Journal of Geophysical Research: Solid Earth, 2014, 119(6): 4583-4605.

[36]

Zhu C, Lu P. Alkali Feldspar Dissolution and Secondary Mineral Precipitation in Batch Systems: 3. Saturation States of Product Minerals and Reaction Paths. Geochimica et Cosmochimica Acta, 2009, 73: 3171-3200.

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/