Submicron volume roughness & asperity contact friction model for principle slip surface in flash heating process

Bojing Zhu , David A. Yuen , Yaolin Shi , Huihong Cheng

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (1) : 96 -107.

PDF
Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (1) : 96 -107. DOI: 10.1007/s12583-015-0514-2
Article

Submicron volume roughness & asperity contact friction model for principle slip surface in flash heating process

Author information +
History +
PDF

Abstract

Based on focused ion beam and shear friction apparatus data, the multi-resolutions (0.2 nm-5 μm) volume roughness & asperity contact (VR & AC) three-dimensional structure on principle slip surface interface-surface (PSS-IS) is measured on high performance computational platform; and physical plastic-creep friction model is established by using hybrid hyper-singular integral equation & lattice Boltzmann & lattice Green function (BE-LB-LG). The correlation of rheological property and VR & AC evolution under transient (10 μs) macro-normal stress (18–300 MPa) and slip rate (0.25–7.5 m/s) are obtained; and the PSS-IS friction in co-seismic flash heating is quantitative analyzed for the first time.

Keywords

VR & AC / BE-LB-LG / submicron-scale structure measurement / plastic-creep model / friction model

Cite this article

Download citation ▾
Bojing Zhu, David A. Yuen, Yaolin Shi, Huihong Cheng. Submicron volume roughness & asperity contact friction model for principle slip surface in flash heating process. Journal of Earth Science, 2015, 26(1): 96-107 DOI:10.1007/s12583-015-0514-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Babacan A E, Gelisli K, Ersoy H. Seismic Tomography and Surface Wave Analysis Based Methodologies on Evaluation of Geotechnical Properties of Volcanic Rocks: A Case Study. Journal of Earth Science, 2014, 25(2): 348-356.

[2]

Beeler N M, Tullis T E, Goldsby D L. Constitutive Relationships and Physical Basis of Fault Strengh due to Flash Heating. Journal of Geophysical Research, 2008, 113 B01401

[3]

Boucly V, Nelias D, Green I. Modeling of the Rolling and Sliding Contact between Two Asperities. Journal of Tribology-Transactions of the Asme, 2007, 129(2): 235-245.

[4]

Byerlee J D, Brace W F. High-Pressure Mechanical Instability in Rocks. Science, 1969, 164(3880): 713-5.

[5]

Byerlee J. Friction of Rocks. Pure and Applied Geophysics, 1978, 116(4/5): 615-626.

[6]

Cheng H H, Qiao Y C, Liu C, . Extended Hybrid Pressure and Velocity Boundary Conditions for D3Q27 Lattice Boltzmann Model. Applied Mathematical Modelling, 2012, 36(5): 2031-2055.

[7]

Deak J C, Pang Y S, Sechler T D, . Vibrational Energy Transfer across a Reverse Micelle Surfactant Layer. Science, 2004, 306(5695): 473-476.

[8]

Dey S, Paul S, Sarkar P. Morphological and Microstructural Evidences of Paleo-Seisminc Occurrences in an Earthquake Prone Zone of Tripura, India. Journal of Earth Science, 2014, 25(2): 289-298.

[9]

DiToro G, Han R, Hirose T, . Fault Lubrication during Earthquakes. Nature, 2011, 471(7339): 494-498.

[10]

Dieteric J H. Time-Dependent Friction in Rocks. Journal of Geophysical Research, 1972, 77(20): 3690-3697.

[11]

Dlott D D. Ultrafast Temperature-Jump Spectroscopy in Solids. Abstracts of Papers of the American Chemical Society, 1994, 208: 17-PHYS.

[12]

Giannuzzi L A, Stevie F A. Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice, 2004

[13]

Goldsby D L, Tullis T E. Low Frictional Strength of Quartz Rocks at Subseismic Slip Rates. Geophysical Research Letters, 2002, 29 17

[14]

Goldsby D L, Tullis T E. Flash Heating Leads to Low Frictional Strength of Crustal Rocks at Earthquake Slip Rates. Science, 2011, 334(6053): 216-218.

[15]

Hayat M A. Electron Microscopy of Enzymes: Principles and Methods, 1973 New York: Van Nostrand Reinhld

[16]

Jacq C, Nelias D, Lormand G, . Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code. Journal of Tribology-Transactions of the Asme, 2002, 124(4): 653-667.

[17]

Journal of Geophysical Research-Solid Earth, 2011, 116 B3

[18]

Libby W F. Optical Transparency and Resistance to Flash Heating. Journal of Chemical Physics, 1960, 33(5): 1588-1589.

[19]

Lin A. Fossil Earthquakes: The Formation and Preservation of Pseudotachylytes, 2008 Berlin: Springer, 348.

[20]

Lloyd E G. Atomic Number and Crystallographic Contrast Images with the SEM: A Review of Back Scattered Electron Techniques. Mineralogical Magazine, 1987, 51: 3-19.

[21]

Lockner D A, Byerlee J D. Micro-Fracturing and Velocity Changes during Creep in Granite. EOS, Transactions American Geophysical Union, 1978, 59 12 1207.

[22]

Mackenzie R. Focused Ion Beam Technology: A Bibliography. Nanotechnology, 1990, 1 2 163

[23]

Moore D E, Morrow C A, Byerlee J D. High-Temperature Permeability and Groundwater Chemistry of Some Nevada Test Site Tuffs. Journal of Geophysical Research-Solid Earth and Planets, 1986, 91(B2): 2163-2171.

[24]

Moore D E, Morrow C A, Byerlee J D. Chemical-Reactions Accompanying Fluid-Flow through Granite Held in a Temperature-Gradient. Geochimica et Cosmochimica Acta, 1983, 47(3): 445-453.

[25]

Morrow C, Lockner D, Moore D, . Permeability of Granite in a Temperature-Gradient. Journal of Geophysical Research, 1981, 86(B4): 3002-3008.

[26]

Nelias D, Antaluca E, Boucly V, . A Three-Dimensional Semianalytical Model for Elastic-Plastic Sliding-Contacts. Journal of Tribology-Transactions of the Asme, 2007, 129(4): 761-771.

[27]

Nelias D, Dumont M L, Champiot F, . Role of Inclusions, Surface Roughness and Operating Conditions on Rolling Contact Fatigue. Journal of Tribology-Transactions of the Asme, 1999, 121(2): 240-251.

[28]

Nelson L S. Intense Rapid Heating with Flash Discharge Lamps. Science, 1962, 136(3513): 296-303.

[29]

Nelson L S, Kuebler N A. Vaporization of Tungsten Studied by Flash Heating and Kinetic Spectroscopy. 1. Near-Ultraviolet Region. Journal of Chemical Physics, 1963, 39 4 1055

[30]

Nelson L S, Richards N L. Use of Flash Heating to Study Combustion of Liquid Metal Droplets. Journal of Physical Chemistry, 1964, 68 5 1268

[31]

Noda H, Dunham E M, Rice J R. Earthquake Ruptures with Thermal Weakening and the Operation of Major Faults at Low overall Stress Levels. Journal of Geophysical Research-Solid Earth, 2009, 114 B07302.

[32]

Orloff J. Fundamental Limits to Imaging Resolution for Focused Ion Beams. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1996, 14 6 3759

[33]

Orloff J, Swanson L. Study of a Field-Ionization Source for Microprobe Applications. J. Vac. Sci. Tech., 1975, 12 6 1209

[34]

Orloff J, Utlaut M, Swanson L. High Resolution Focused Ion Beams: FIB and Its Applications, 2003

[35]

Prior D J, Patrick W T, Ursula D W, . Orientation Contrast Imaging of Microstructures in Rocks Using Forescatter Detectors in the Scanning Electron Microscope. Mineralogical Magazine, 1996, 60(403): 859-869.

[36]

Rempel A W, Rice J R. Thermal Pressurization and Onset of Melting in Fault Zones. Journal of Geophysical Research-Solid Earth, 2006, 111 B09314

[37]

Reyntjens S, Puers R. A Review of Focused Ion Beam Applications in Microsystem Technology. J. Micromech. Microeng., 2001, 11(4): 287-300.

[38]

Rice J R. A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. Journal of Applied Mechanics, 1968, 35: 379-386.

[39]

Rice J R. Heating and Weakening of Faults during Earthquake Slip. Journal of Geophysical Research-Solid Earth, 2006, 111 B05311

[40]

Rice J R, Ruina A L. Stability of Steady Frictional Slipping. Journal of Applied Mechanics-Transactions of the Asme, 1983, 50(2): 343-349.

[41]

Ruina A. Slip Instability and State Variable Friction Laws. Journal of Geophysical Research, 1983, 88(B12): 359-370.

[42]

Scaraggi M, Carbone G, Dini D. Lubrication in Soft Rough Contacts: A Novel Homogenized Approach. Part II-Discussion. Soft Matter, 2011, 7(21): 10407-10416.

[43]

Scaraggi M, Carbone G, Persson B N J, . Lubrication in Soft Rough Contacts: A Novel Homogenized Approach. Part I-Theory. Soft Matter, 2011, 7(21): 10395-10406.

[44]

Seal M. The Friction of Single Crystal Diamond. Proc. R. Soc. London Ser. A, 1958, 249: 379-389.

[45]

Seal M. The Friction of Diamond. Diamond Review, 1965, 25: 111-116.

[46]

Seliger R, Ward J W, Wang V, . A High-Intensity Scanning Ion Probe with Submicrometer Spot Size. Appl. Phys. Lett., 1979, 34 5 310

[47]

Siman-Tov S, Aharonov E, Sagy A, . Nanograins Form Carbonate Fault Mirrrors. Geology, 2013, 41(6): 703-706.

[48]

Tapp B, Cook J. Pressure Solution Zone Propagation in Natually Deformed Carbonate Rocks. Geology, 2013, 16(2): 182-185.

[49]

Wang Q J, Chung Y W. Encyclopedia of Tribology, 2013

[50]

Wang Q, Cheng H S. A Mixed Lubrication Model for Journal Bearings with a Thin Soft Coating. 1. Contact and Lubrication Analysis. Tribology Transactions, 1995, 38(3): 654-662.

[51]

Wang Q, Cheng H S. A Mixed Lubrication Model for Journal Bearings with a Soft Coating, Part II: Flash Temperature Analysis and Its Application to Tin Coated Al-Si Bearings. Tribology Transactions, 1995, 38: 517-524.

[52]

Wang W Z, Wang S, Shi F H, . Simulations and Measurements of Sliding Friction between Rough Surfaces in Point Contacts: From EHL to Boundary Lubrication. Journal of Tribology-Transactions of the Asme, 2007, 129(3): 495-501.

[53]

Wang Y S, Wang Q J, Lin C, . Development of a Set of Stribeck Curves for Conformal Contacts of Rough Surfaces. Tribology Transactions, 2006, 49(4): 526-535.

[54]

Watt I M. The Principles and Practice of Electron Microscopy, 1985 Cambridge: Cambridge University Press

[55]

Xiong S, Wang Q. Steady-State Hydrodynamic Lubrications Modeled with the Payvar-Salant Mass Conservation Model. Journal of Tribology, 2012, 134(3): 1-16.

[56]

Yue Y M, Wang K L, Liu B, . Development of New Remote Sensing Methods for Mapping Green Vegetation and Exposed Bedrock Fractions within Heterogeneous Landscapes. International Journal of Remote Sensing, 2013, 34(14): 5136-5153.

[57]

Zhu B J, Liu C, Shi Y L, . Saturated Dislocations Transient Propagation-Evolution in Olivine Structure under Ultra High-Coupled Thermal-Force Fields. Theoretical and Applied Fracture Mechanics, 2012, 58(1): 9-20.

[58]

Zhu B J, Qin T Y. 3D Modeling of Crack Growth in Electro-Magneto-Thermo-Elastic Coupled Viscoplastic Multiphase Composites. Applied Mathematical Modelling, 2009, 33: 1014-1041.

[59]

Zhu B J, Shi Y L. Three-Dimensional Flow Driven Pore-Crack Networks in Porous Composites: Boltzmann Lattice Method and Hybrid Hypersingular Integrals. Theoretical and Applied Fracture Mechanics, 2010, 53(1): 9-41.

AI Summary AI Mindmap
PDF

223

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/