Use of geochemical and geophysical techniques to characterize and prospect for geothermal resources and hydrothermal ore deposits

Robert E. Criss

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (1) : 73 -77.

PDF
Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (1) : 73 -77. DOI: 10.1007/s12583-015-0510-6
Special Issue on Geohtermal Energy

Use of geochemical and geophysical techniques to characterize and prospect for geothermal resources and hydrothermal ore deposits

Author information +
History +
PDF

Abstract

Fluid-rock interactions alter the geochemical, isotopic, petrographic and physical character of host rocks, producing a permanent record of hydrothermal activity. Maps of altered rock properties show regular variations that disclose master geologic controls and delineate likely sites for geothermal and mineral resources. In many cases, geochemical and stable isotope data reveal the origins of thermal fluids, and they can also provide estimates of reservoir temperatures and identify zones of fluid recharge.

Keywords

geothermal system / hydrothermal system / geophysical prospecting / geochemical prospecting / Mt. Lassen / oxygen isotope

Cite this article

Download citation ▾
Robert E. Criss. Use of geochemical and geophysical techniques to characterize and prospect for geothermal resources and hydrothermal ore deposits. Journal of Earth Science, 2015, 26(1): 73-77 DOI:10.1007/s12583-015-0510-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Craig H, Boato G, White D E. Isotopic Geochemistry of Thermal Waters. Proc. 2nd Conf. Nuclear Processes Geological Settings, 1956 Washington, D.C.: National Research Council, 29.

[2]

Criss R E, Champion D E, McIntyre D H. δ18O, Aeromagnetic and Gravity Anomalies Associated with Hydrothermally-Altered Zones in the Yankee Fork Mining District, Custer County, Idaho. Economic Geology, 1985, 80: 1277-1296.

[3]

Criss R E, Hofmeister A M. Application of Fluid Dynamics Principles in Tilted Permeable Media to Terrestrial Hydrothermal Systems. Geophysical Research Letters, 1991, 18: 199-202.

[4]

Criss R E, Taylor H P Jr.. Meteoric-Hydrothermal Systems. Reviews in Mineralogy, 1986, 16: 373-424.

[5]

Dalton J B, Bove D J, Mladinich C S, . Imaging Spectroscopy Applied to the Animas River Watershed and Silverton Caldera. U.S. Geological Survey Professional Paper, 2007, 1651: 141-159.

[6]

Fournier R O, Truesdell A H. An Empirical Na-K-Ca Geothermometer for Natural Waters. Geochimica et Cosmochimica Acta, 1973, 37: 1255-1275.

[7]

Hook S J, Myers J J, Thome K J, . The MODIS/ASTER Airborne Simulator (MASTER)—A New Instrument for Earth Science Studies. Remote Sensing of Environment, 2001, 76(1): 93-102.

[8]

Janik C J, Nehring N L, Truesdell A H. Stable Isotope Geochemistry of Thermal Fluids from Lassen Volcanic National Park, California. Geothermal Resources Council, Transactions, 1983, 7: 295-300.

[9]

Jaworowski C, Heasler H P, Neale C M U, . Using Thermal Infrared Imagery and LiDAR in Yellowstone Geyser Basins. Yellowstone Science, 2010, 18(1): 8-19.

[10]

Larson P B, Taylor H P Jr.. An Oxygen Isotope Study of Hydrothermal Alteration in the Lake City Caldera, San Juan Mountains, Colorado. Journal of Volcanology and Geothermal Research, 1986, 30: 47-82.

[11]

Muffler L J, Nehring N L, Truesdell A H, . The Lassen Geothermal System. U.S., 1982

[12]

NASA NASA Infrared Images may Provide Clues about Mt. St. Helens’ Eruption, 2004

[13]

Rose T P, Criss R E, Mughannam A J, . Oxygen Isotope Evidence for Hydrothermal Alteration within a Quaternary Stratovolcano, Lassen Volcanic National Park, California. Journal of Geophysical Research, 1994, 99: 21621-21633.

[14]

Rose T P, Davisson M L. Radiocarbon in Hydrologic Systems Containing Dissolved Magmatic Carbon Dioxide. Science, 1996, 273: 1367-1370.

[15]

Rose T P, Davisson M L, Criss R E. Isotope Hydrology of Voluminous Cold Springs in Fractured Rock from an Active Volcanic Region, Northeastern California. Journal of Hydrology, 1996, 179: 207-236.

[16]

Singleton M J, Criss R E. Effects of Normal Faulting on Fluid Flow in an Ore-Producing Hydrothermal System, Comstock Lode, Nevada. Journal of Volcanology and Geothermal Research, 2002, 115(3–4): 437-450.

[17]

Singleton M J, Criss R E. Symmetry of Flow in the Comstock Lode Hydrothermal System: Evidence for Longitudinal Convective Rolls in Geologic Systems. Journal of Geophysical Research, 2004, 109 B03205

[18]

Taylor H P Jr.. Oxygen Isotope Evidence for Large-Scale Interaction between Meteoric Ground Waters and Tertiary Granodiorite Intrusions, Western Cascade Range, Oregon. Journal of Geophysical Research, 1971, 76: 7855-7874.

[19]

Taylor H P Jr.. Water/Rock Interactions and the Origin of H2O in Granitic Batholiths. Journal of the Geological Society of London, 1977, 133: 509-558.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/