SEPRAN: A versatile finite-element package for a wide variety of problems in geosciences

Arie van den Berg , Guus Segal , David A. Yuen

Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (1) : 89 -95.

PDF
Journal of Earth Science ›› 2015, Vol. 26 ›› Issue (1) : 89 -95. DOI: 10.1007/s12583-015-0508-0
Special Issue on Geohtermal Energy

SEPRAN: A versatile finite-element package for a wide variety of problems in geosciences

Author information +
History +
PDF

Abstract

Numerical modelling of geological processes, such as mantle convection, flow in porous media, and geothermal heat transfer, has become quite common with the increase in computing and the availability of usable software. Today modelling these dynamical processes entails the solving of the governing equations involving the mass, momentum, energy and chemical transport. These equations represent partial differential equations and must be solved on powerful enough computers because they require sufficient spatial and temporal resolution to be useful. We describe here the salient and outstanding features of the SEPRAN software package, developed in the Netherlands, as a case study for a robust and user-friendly software, which the geological community can utilize in handling many thermal-mechanical-chemical problems found in geology, which will include geothermal situations, where many types of partial differential equations must be solved at the same time with thermodynamical input parameters.

Keywords

SEPRAN / finite element package / geodynamic and planetary modelling / geothermal / groundwater flow

Cite this article

Download citation ▾
Arie van den Berg, Guus Segal, David A. Yuen. SEPRAN: A versatile finite-element package for a wide variety of problems in geosciences. Journal of Earth Science, 2015, 26(1): 89-95 DOI:10.1007/s12583-015-0508-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Asgari A, Moresi L N. Jones S. Multiscale Particle-in-Cell Method: From Fluid to Solid Mechanics. Advanced Methods for Practical Applications in Fluid Mechanics, 2012 Croatia: InTech, 185-208.

[2]

Chertova M V, Geenen T, van den Berg A, . Using Open Sidewalls for Modelling Self-Consistent Lithosphere Subduction Dynamics. Solid Earth, 2012, 3: 313-326.

[3]

Christensen U R, Yuen D A. The Interaction of a Subducting Lithospheric Slab with a Chemical or Phase Boundary. J. Geophys. Res., 1984, 89: 4389-4402.

[4]

Cizkova H, van den Berg A, Spakman P, . The Viscosity of Earths Lower Mantle Inferred from Sinking Speed of Subducted Lithosphere. Phys. Earth Planet. Inter., 2012, 200: 56-62.

[5]

Cuvelier C, Segal A, van Steenhoven A A. Finite Element Methods and Navier-Stokes Epuations, 1986 Dordrecht: D. Reidel Publishing Company

[6]

de Smet J H, van den Berg A, Vlaar N J, . A Characteristics-Based Method for Solving the Transport Equation and Its Application to the Process of Mantle Differentiation and Continental Root Growth. Geophys. J. Int., 2000, 140: 651-659.

[7]

de Vries J. Lunar Evolution—A Combined Numerical Modelling and HPT Experimental Study, 2012 Utrecht: Utrecht University

[8]

de Vries J, van den Berg A, van Westrenen W. Formation and Evolution of a Lunar Core from Ilmenite-Rich Magma Ocean Cumulates. Earth Planet. Sci. Lett., 2010, 292: 139-147.

[9]

Geenen T, Ur Rehman M, MacLachlan S P, . Scalable Robust Solvers for Unstructured FE Geodynamic Modeling Applications: Solving the Stokes Equation for Models with Large Localized Viscosity Contrasts. Geochemistry, Geophysics, Geosystems, 2009, 10 9 Q09002

[10]

Gross L, Bourgouin L, Hale A J, . Interface Modeling in Incompressible Media Using Level Sets in Escript. Phys. Earth Planet. Inter., 2007, 163: 23-34.

[11]

Hillebrand B, Thieulot C, Geenen T, . Using the Level Set Method in Geodynamical Modeling of Multi-Material Flows and Earth’s Free Surface. Solid Earth, 2014, 6: 1523-1554.

[12]

Hofmeister A M. Mantle Values of Thermal Conductivity and the Geotherm from Phonon Life-Times. Science, 1999, 283: 1699-1706.

[13]

Jacobs M H G, van den Berg A. Complex Phase Distribution and Seismic Velocity Structure of the Transition Zone: Convection Model Predictions for a Magnesium-Endmember Olivine-Pyroxene Mantle. Phys. Earth Planet. Inter., 2011, 186: 36-48.

[14]

Kronbichler M, Heister T, Bangerth W. High Accuracy Mantle Convection Simulation through Modern Numerical Methods. Geophys. J. Int., 2012, 191: 12-29.

[15]

Lin S C, van Keken P E. Dynamics of Thermochemical Plumes: 1. Plume Formation and Entrainment of a Dense Layer. Geochemistry, Geophysics, Geosystems, 2006, 7 2 Q02006

[16]

Malevsky A V, Yuen D A. Characteristics-Based Methods Applied to Infinite Prandtl Number Thermal Convection in the Hard Turbulent Regime. Phys. Fluids A, 1991, 3: 2105-2115.

[17]

Moresi L N, Solomatov V S. Numerical Investigation of 2D Convection with Extremely Large Viscosity Variations. Phys. Fluids, 1995, 7: 2154-2162.

[18]

Moresi L N, Quenette S, Lemiale V, . Computational Approaches to Studying Non-Linear Dynamics of the Crust and Mantle. Phys. Earth Planet. Inter., 2007, 163: 69-82.

[19]

Schott B, van den Berg A P, Yuen D A. Focussed Time-Dependent Martian Volcanism from Chemical Differentiation Coupled with Variable Thermal Conductivity. Geophys. Res. Lett., 2001, 28 4271

[20]

Sewell G. The Numerical Solution of Ordinary and Partial Differential Equations, 2005

[21]

Snyder G A, Taylor L A, Neal C R. A Chemical Model for Generating the Source of Mare Basalts: Combined Equilibrium and Fractional Crystallization of the Lunar Magmasphere. Geochim. Cosmochim. Acta, 1992, 56(10): 3809-3823.

[22]

Thieulot C. ELEFANT: A User-Friendly Multipurpose Geodynamics Code. Solid Earth, 2014, 6: 1949-2096.

[23]

Umemoto K, Wentzcovitch R M, Allen P B. Dissociation of MgSiO3 in the Cores of Gas Giants and Terrestrial Exoplanets. Science, 2006, 311: 983-986.

[24]

Ur Rehman M, Vuik C, Segal G. A Comparison of Preconditioners for Incompressible Navier Stokes Solvers. International Journal for Nuivierical Methods in Fluids, 2008, 57: 1731-1751.

[25]

van den Berg A, Rainey E S G, Yuen D A. The Combined Influences of Variable Thermal Conductivity, Temperature- and Pressure-Dependent Viscosity and Core-Mantle Coupling on Thermal Evolution. Phys. Earth Planet. Inter., 2005, 149: 259-278.

[26]

van den Berg A, van Keken P E, Yuen D A. The Effects of a Composite Non-Newtonian and Newtonian Theology Mantle Convection. Geophys. J. Int., 1993, 115: 62-78.

[27]

van den Berg A, Yuen D A, Beebe G L, . The Dynamical Impact of Electronic Thermal Conductivity on Deep Mantle Convection of Exosolar Planets. Phys. Earth Planet. Inter., 2010, 178: 136-154.

[28]

van den Berg A, Yuen D A, Umemoto K, . EGU2012-3491-3, 2012 EGU General Assembly. Geophysical Research Abstracts, 2012, 14.

[29]

van Hunen J, van den Berg A. Plate Tectonics on the Early Earth: Limitations Imposed by Strength and Buoyancy of Subducted Lithosphere. Lithos, 2008, 103: 217-235.

[30]

van Kan J, Segal A, Vermolen F. Numerical Methods in Scientific Computing, 2005 Delft: VSSD

[31]

van Keken P E, King S D, Schmeling H, . A Comparison of Methods of the Modeling of Thermochemical Convection. J. Geophys. Res., 1997, 102(22): 477-495.

[32]

van Keken P E, Spiers C J, van den Berg A, . The Effective Viscosity of Rocksalt: Implementation of Steady-State Creep Laws in Numerical Models of Salt Diapirism. Tectonophysics, 1993, 225: 457-476.

[33]

van Summeren J R G, van den Berg A, van der Hilst R D. Upwellings from a Deep Mantle Reservoir Filtered at the 660 km Phase Transition in Thermo-Chemical Convection Models and Implications for Intra-Plate Volcanism. Phys. Earth Planet. Inter., 2009, 172: 210-224.

[34]

van Thienen P, van Summeren J, van der Hilst R D, . Numerical Study of the Origin and Stability of Chemically Distinct Reservoirs Deep in Earth’s Mantle. Earth’s Deep Mantle, Structure, Composition, and Evolution. Geophysical Monograph, 2005, 160: 117-136.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/