High-pressure experimental studies on geo-liquids using synchrotron radiation at the Advanced Photon Source

Yanbin Wang , Guoyin Shen

Journal of Earth Science ›› 2014, Vol. 25 ›› Issue (6) : 939 -958.

PDF
Journal of Earth Science ›› 2014, Vol. 25 ›› Issue (6) : 939 -958. DOI: 10.1007/s12583-014-0504-9
Article

High-pressure experimental studies on geo-liquids using synchrotron radiation at the Advanced Photon Source

Author information +
History +
PDF

Abstract

We review recent progress in studying silicate, carbonate, and metallic liquids of geological and geophysical importance at high pressure and temperature, using the large-volume high-pressure devices at the third-generation synchrotron facility of the Advanced Photon Source, Argonne National Laboratory. These integrated high-pressure facilities now offer a unique combination of experimental techniques that allow researchers to investigate structure, density, elasticity, viscosity, and interfacial tension of geo-liquids under high pressure, in a coordinated and systematic fashion. Experimental techniques are described, along with scientific highlights. Future developments are also discussed.

Keywords

high pressure / synchrotron / melts / liquid structure / magma dynamics / mantle dynamics

Cite this article

Download citation ▾
Yanbin Wang, Guoyin Shen. High-pressure experimental studies on geo-liquids using synchrotron radiation at the Advanced Photon Source. Journal of Earth Science, 2014, 25(6): 939-958 DOI:10.1007/s12583-014-0504-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abe Y. Physical State of the Very Early Earth. Lithos, 1993, 30(3–4): 223-235.

[2]

Abe Y. Thermal and Chemical Evolution of the Terrestrial Magma Ocean. Physics of the Earth and Planetary Interiors, 1997, 100(1–4): 27-39.

[3]

Agee C B, Walker D. Static Compression and Olivine Floatation in Ultrabasic Silicate Liquid. J. Geophys. Res., 1988, 93(B4): 3437-3449.

[4]

Allwardt J R, Stebbins J F, Schmidt B C, . Aluminum Coordination and the Densification of High-Pressure Aluminosilicate Glasses. American Mineralogist, 2005, 90(7): 1218-1222.

[5]

Anderson O L. Equations of State of Solids for Geophysics and Cramic Sience, 1995 Oxford: Oxford University Press

[6]

Bashforth F, Adams J C. An Attempt to Test the Theory of Capillary Action, 1892 Cambridge: Cambridge University Press and Deighton Bell & Co.

[7]

Beckmann F, Herzen J, Haibel A, . High Density Resolution in Synchrotron-Radiation-Based Attenuation-Contrast Microtomography. Paper Presented at Proc. SPIE, San Diego, 2008

[8]

Birch F. Elaticity and Constitution of the Earth’s Interior. J. Geophys. Res., 1952, 57: 227-286.

[9]

Bottinga Y, Weill D F. The Viscosity of Magmatic Silicate Liquids: A Model Calculation. American Journal of Science, 1972, 272(5): 438-475.

[10]

Brazhkin V, Farnan I, Funakoshi K, . Structural Transformations and Anomalous Viscosity in the B2O3 Melt under High Pressure. Phys. Rev. Lett., 2010, 105 115701.

[11]

Brizard M, Megharfi M, Mahé E, . Design of a High Precision Falling-Ball Viscometer. Review of Scientific Instruments, 2005, 76 2 025109.

[12]

Butt H J, Graf K, Kappl M. Physics and Chemistry of Interfaces, 2003 Darmstadt: Wyllie-VCH Verlag, 361.

[13]

Coltice N, Moreira M, Hernlund J, . Crystallization of a Basal Magma Ocean Recorded by Helium and Neon. Earth Planet. Sci. Lett., 2011, 308(1–2): 193-199.

[14]

Cromer D T. Compton Scattering Factors for Aspherical Free Atoms. The Journal of Chemical Physics, 1969, 50: 4857-4859.

[15]

Cromer D T, Mann J B. Compton Scattering Factors for Spherically Symmetric Free Atoms. The Journal of Chemical Physics, 1967, 47: 1892-1893.

[16]

Dobson D P, Crichton W A, Vocadlo L, . In Situ Measurement of Viscosity of Liquids in the Fe-FeS System at High Pressures and Temperatures. American Mineralogist, 2000, 85: 1838-1842.

[17]

Faber T E, Ziman J M. A Theory of the Electrical Properties of Liquid Metals. Philosophical Magazine, 1965, 11(109): 153-173.

[18]

Faxén H. Der Widerstand Gegen Die Bewegung Einer Starren Kugel in Einer Zähen Flüssigkeit, Die Zwischen Zwei Parallelen Ebenen Wänden Eingeschlossen Ist. Annalen der Physik, 1922, 373(10): 89-119.

[19]

Funakoshi K. Energy-Dispersive X-Ray Diffraction Study for Alkali Silicate Melts Using Synchrotron Radiation Under High Pressure and Temperature, 1995 Tokyo: Tokyo Institute of Technology, 117.

[20]

Funamori N, Yamamoto S, Yagi T, . Exploratory Studies of Silicate Melt Sructure at High Pressures and Temperatures by In Situ X-Ray Diffraction. J. Geophys. Res., 2004, 109 B03203.

[21]

Gaetani G, Grove T. Wetting of Mantle Olivine by Sulfide Melt: Implications for Re/Os Ratios in Mantle Peridotite and Late-Stage Core Formation. Earth Planet. Sci. Lett., 1999, 169: 147-163.

[22]

Genge M J, Price G D, Jones A P. Molecular Dynamics Simulations of CaCO3 Melts to Mantle Pressures and Temperatures: Implications for Carbonatite Magmas. Earth Planet. Sci. Lett., 1995, 131(3–4): 225-238.

[23]

Ghiorso M S. An Equation of State for Silicate Melts. III. Analysis of Soichiometric Liquids at Elevated Pressure: Shock Compression Data, Molecular Dynamics Simulations and Mineral Fusion Curves. American Journal of Science, 2004, 304(8–9): 752-810.

[24]

Giordano D, Russell J K, Dingwell D B. Viscosity of Magmatic Liquids: A Model. Earth Planet. Sci. Lett., 2008, 271(1–4): 123-134.

[25]

Greaves G N, Sen S. Inorganic Glasses, Glass-Forming Liquids and Amorphizing Solids. Advances in Physics, 2007, 56(1): 1-166.

[26]

Hansen F K. Surface Tension by Image Analysis: Fast and Automatic Measurements of Pendant and Sessile Drops and Bubbles. Journal of Colloid and Interface Science, 1993, 160(1): 209-217.

[27]

Henderson G S, Calas G, Stebbins J F. The Structure of Silicate Glasses and Melts. Elements, 2006, 2: 269-273.

[28]

Herzfeld K F, Litovitz T A. Absorption and Dispersion of Ultrasonic Waves, 1959 New York: Academic Press, 535.

[29]

Huang H J, Fei Y W, Cai L C, . Evidence for an Oxygen-Depleted Liquid Outer Core of the Earth. Nature, 2011, 479: 513-516.

[30]

Jing Z, Karato S I. Compositional Effect on the Pressure Derivatives of Bulk Modulus of Silicate Melts. Earth Planet. Sci. Lett., 2008, 272(1–2): 429-436.

[31]

Jing Z, Karato S I. A New Approach to the Equation of State of Silicate Melts: An Application of the Theory of Hard Sphere Mixtures. Geochimica et Cosmochimica Acta, 2011, 75(22): 6780-6802.

[32]

Jing Z, Wang Y, Kono Y, . Moon’s Molten Outer Core: Composition, Density and Thermal State. Earth Planet. Sci. Lett., 2014, 396: 78-87.

[33]

Jones A, Genge M, Carmody L. Carbonate Melts and Carbonatites. Reviews in Mineralogy and Geochemistry, 2013, 75: 289-322.

[34]

Kanzaki M, Kurita K, Fujii T, . Manghnani M H, Syono Y, . A New Technique to Measure the Viscosity and Density of Silicate Melts at High Pressure. High-Pressure Research in Mineral Physics, 1987 Tokyo: Terrapub/AGU, 195-200.

[35]

Kapilashrami E, Jakobsson A, Seetharaman S, . Studies of the Wetting Characteristics of Liquid Iron on Dense Alumina by the X-Ray Sessile Drop Technique. Metall. and Materi. Trans. B, 2003, 34(2): 193-199.

[36]

Karki B B. First-Principles Molecular Dynamics Simulations of Silicate Melts: Structural and Dynamical Properties. Reviews in Mineralogy and Geochemistry, 2010, 71(1): 355-389.

[37]

Katayama Y. Density Measurements of Non-Cystalline Materials under High Pressure and High Temperature. High Pressure Research, 1996, 14: 383-391.

[38]

Katayama Y. In Situ Observation of a First-Order Liquid-Liquid Transition in Phosphorus. Journal of Non-Crystalline Solids, 2002, 312–314: 8-14.

[39]

Katayama Y, Tsuji K, Chen J Q, . Density of Liquid Tellurium under High Pressure. Journal of Non-Crystalline Solids, 1993, 156–158(Part2): 687-690.

[40]

Ketcham R A, Carlson W D. Acquisition, Optimization and Interpretation of X-Ray Computed Tomographic Imagery: Applications to the Geosciences. Computers & Geosciences, 2001, 27(4): 381-400.

[41]

Kono Y, Kenney-Benson C, Hummer D, . Ultralow Viscosity of Carbonate Melts at High Pressures. Nat. Commun., 2014, 5 5091.

[42]

Kono Y, Park C, Kenney-Benson C, . Toward Comprehensive Studies of Liquids at High Pressures and High Temperatures: Combined Structure, Elastic Wave Velocity, and Viscosity Measurements in the Paris-Edinburgh Cell. Physics of the Earth and Planetary Interiors, 2014, 228: 269-280.

[43]

Kono Y, Kenney-Benson C, Kenney-Benson C, . Anomaly in the Viscosity of Liquid KCl at High Pressures. Physical Review B, 2013, 87 2 024302.

[44]

Kono Y, Park C, Sakamaki T, . Simultaneous Structure and Elastic Wave Velocity Measurement of SiO2 Glass at High Pressures and High Temperatures in a Paris-Edinburgh Cell. Review of Scientific Instruments, 2012, 83(3): 33905-33908.

[45]

Kung J, Li B, Uchida T, . In Situ Measurements of Sound Velocities and Densities across the Orthopyroxene—High-Pressure Clinopyroxene Tansition in MgSiO3 at High Pressure. Physics of the Earth and Planetary Interiors, 2004, 147(1): 27-44.

[46]

Kushiro I, Mysen B O. A Possible Effect of Melt Sructure on the Mg-Fe2+ Partitioning between Olivine and Melt. Geochimica et Cosmochimica Acta, 2002, 66(12): 2267-2272.

[47]

Labrosse S. Thermal and Magnetic Evolution of the Earth’s Core. Physics of the Earth and Planetary Interiors, 2003, 140(1–3): 127-143.

[48]

Labrosse S, Hernlund J W, Coltice N. A Crystallizing Dense Magma Ocean at the Base of the Earth’s Mantle. Nature, 2007, 450(7171): 866-869.

[49]

Lange R L, Carmichael I S E. Thermodynamic Properties of Silicate Liquids with Emphasis on Density, Thermal Expansion and Compressibility. Reviews in Mineralogy and Geochemistry, 1990, 24(1): 25-64.

[50]

Lee S K. Simplicity in Melt Densification in Multicomponent Magmatic Reservoirs in Earth’s Interior Revealed by Multinuclear Magnetic Resonance. Proceedings of the National Academy of Sciences, 2011, 108(17): 6847-6852.

[51]

Lee S K, Eng P J, Mao H K. Probing of Pressure-Induced Bonding Transitions in Crystalline and Amorphous Earth Materials: Insights from X-Ray Raman Scattering at High Pressure. Reviews in Mineralogy and Geochemistry, 2014, 78(1): 139-174.

[52]

Lesher C E. Self-Diffusion in Silicate Melts: Theory, Observations and Applications to Magmatic Systems. Reviews in Mineralogy and Geochemistry, 2010, 72(1): 269-309.

[53]

Lesher C E, Wang Y, Gaudio S, . Volumetric Properties of Magnesium Silicate Glasses and Supercooled Liquid at High Pressure by X-Ray Microtomography. Physics of the Earth and Planetary Interiors, 2009, 174(1–4): 292-301.

[54]

Li B, Kung J, Uchida T, . Chen J, Wang Y, Duffy T S, . Simultaneous Equation of State, Pressure Calibration and Sound Velocity Measurements to Lower Mantle Pressures Using Multi-Anvil Apparatus. Advances in High-Pressure Techniques for Geophysical Applications, 2005 Amsterdam: Elsevier, 49-66.

[55]

Lorch E. Neutron Diffraction by Germania, Silica and Radiation-Damaged Silica Glasses. Journal of Physics C: Solid State Physics, 1969, 2 2 229.

[56]

Maude A D. End Effects in a Falling-Sphere Viscometer. British Journal of Applied Physics, 1961, 12 6 293.

[57]

Mezouar M. Multichannel Collimator for Structural Investigation of Liquids and Amorphous Materials at High Pressures and Temperatures. Rev. Sci. Instrum., 2002, 73 10 3570.

[58]

Minarik W G, Ryerson F J, Watson E B. Textural Entrapment of Core-Forming Melts. Science, 1996, 272(5261): 530-533.

[59]

Morard G, Sanloup C, Guillot B, . In Situ Structural Investigation of Fe-S-Si Immiscible Liquid System and Evolution of Fe-S Bond Properties with Pressure. J. Geophys. Res., 2008, 113 B10205.

[60]

Morard G, Andrault D, Guignot N, . In Situ Determination of Fe-Fe3S Phase Diagram and Liquid Structural Properties up to 65 GPa. Earth and Planetary Science Letters, 2008, 272(3–4): 620-626.

[61]

Morard G, Sanloup C, Fiquet G, . Structure of Eutectic Fe-FeS Melts to Pressures up to 17 GPa: Implications for Planetary Cores. Earth Planet. Sci. Lett., 2007, 263(1–2): 128-139.

[62]

Morard G, Siebert J, Andrault D, . The Earth’s Core Composition from High Pressure Density Measurements of Liquid Iron Alloys. Earth Planet. Sci. Lett., 2013, 373: 169-178.

[63]

Mysen B. The Structure of Silicate Melts. Ann. Rev. Earth Planet. Sci., 1983, 11: 75-97.

[64]

Mysen B, Richet P. Mysen B, Richet P. Chapter 4 Melt and Glass Structure: Basic Concepts. Silicate Glasses and Melts, 2005 Amsterdam: Elsevier, 101-129.

[65]

Nishida K, Ohtani E, Urakawa S, . Density Measurement of Liquid FeS at High Pressures Using Synchrotron X-Ray Absorption. American Mineralogist, 2011, 96 5 864.

[66]

Nishikawa N, Iijima T. Correction for Intensity Data in Energy-Dispersive X-Ray Diffractometry of Liquid, Application to Carbon Tetrachloride. Bull. Chem. Soc. Jpn., 1984, 57: 1750-1759.

[67]

Phillips J C. Topology of Covalent Non-Crystalline Solids I: Short-Range Order in Chalcogenide Alloys. Journal of Non-Crystalline Solids, 1979, 34(2): 153-181.

[68]

Poe B T, Romano C, Liebske C, . High-Temperature Viscosity Measurements of Hydrous Albite Liquid Using In-Situ Falling-Sphere Viscometry at 2.5 GPa. Chemical Geology, 2006, 229(1–3): 2-9.

[69]

Rigden S M, Ahrens T J, Stolper E M. Shock Compression of Molten Silicate: Results for a Model Basaltic Composition. J. Geophys. Res., 1988, 93(B1): 367-382.

[70]

Rotenberg Y, Boruvka L, Neumann A W. Determination of Surface Tension and Contact Angle from the Shapes of Axisymmetric Fluid Interfaces. Journal of Colloid and Interface Science, 1983, 93(1): 169-183.

[71]

Rutter M D, Secco R A, Liu H, . Viscosity of Liquid Fe at High Pressure. Physical Review B, 2002, 66 6 060102.

[72]

Rutter M D, Secco R A, Uchida T, . Towards Evaluating the Viscosity of the Earth’s Outer Core: An Experimental High Pressure Study of Liquid Fe-S (8.5 wt.% S). Geophysical Research Letters, 2002, 29(8): 58-51-58-54.

[73]

Sakamaki T, Kono Y, Wang Y, . Contrasting Sound Velocity and Intermediate-Range Structural Order between Polymerized and Depolymerized Silicate Glasses under Pressure. Earth Planet. Sci. Lett., 2014, 391: 288-295.

[74]

Sakamaki T, Wang Y, Park C, . Contrasting Behavior of Intermediate-Range Order Sructures in Jadeite Glass and Melt. Physics of the Earth and Planetary Interiors, 2014, 228: 281-286.

[75]

Sakamaki T, Ohtani E, Urakawa S, . Measurement of Hydrous Peridotite Magma Density at High Pressure Using the X-Ray Absorption Method. Earth Planet. Sci. Lett., 2009, 287(3–4): 293-297.

[76]

Sakamaki T, Ohtani E, Urakawa S, . Density of Dry Peridotite Magma at High Pressure Using an X-Ray Absorption Method. American Mineralogist, 2010, 95(1): 144-147.

[77]

Sakamaki T, Ohtani E, Urakawa S, . Density of Carbonated Peridotite Magma at High Pressure Using an X-Ray Absorption Method. American Mineralogist, 2011, 96(4): 553-557.

[78]

Sakamaki T, Suzuki A, Ohtani E. Stability of Hydrous Melt at the Base of the Earth’s Upper Mantle. Nature, 2006, 439(7073): 192-194.

[79]

Sakamaki T, Suzuki A, Ohtani E, . Ponded Melt at the Boundary between the Lithosphere and Asthenosphere. Nature Geosci., 2013, 6(12): 1041-1044.

[80]

Sakamaki T, Wang Y, Park C, . Structure of Jadeite Melt at High Pressures up to 4.9 GPa. Journal of Applied Physics, 2012, 111(11): 112623-112625.

[81]

Sanloup C, Fiquet G, Gregoryanz E, . Effect of Si on Liquid Fe Compressibility: Implications for Sound Velocity in Core Materials. Geophysical Research Letters, 2004, 31 L07604.

[82]

Sanloup C, Guyot F, Gillet P. Density Measurements of Liquid Fe-S Alloys at High Pressure. Geophysical Research Letters, 2000, 27: 811-814.

[83]

Schubert G, Turcotte D L, Olson P. Mantle Convection in the Earth and Planets, 2001 Cambridge: Cambridge University Press

[84]

Secco R A, Rutter M D, Balog S P, . Viscosity and Density of Fe-S Liquids at High Pressures. Journal of Physics: Condensed Matter, 2002, 14 44 11325.

[85]

Shannon M C, Agee C B. Percolation of Core Melts at Lower Mantle Conditions. Science, 1998, 280(5366): 1059-1061.

[86]

Shen G, Prakapenka V B, Rivers M L, . Structure of Liquid Iron at Pressures up to 58 GPa. Physical Review Letters, 2004, 92 185701.

[87]

Shenoy G K, Viccaro P J, Mills D M. Characteristics of the 7-GeV Advanced Photon Source: A Guide for Users, 1988 Argonne: Argonne National Laboratory, 1-57.

[88]

Stebbins J F. Dynamics and Structure of Slicate and Oxide Melts: Nuclear Magnetic Resonance Studies. Reviews in Mineralogy and Geochemistry, 1995, 32(1): 191-246.

[89]

Stebbins J F, Xue X. Henderson G S, Neuville D. NMR Spectroscopy in Inorganic Earth Materials. Spectroscopic and Other Characterization Methods in Mineralogy and Materials Sciences, 2014 Chantilly, VA: Mineralogical Society of America, 650-653.

[90]

Stevenson D J. Planetary Magnetic Fields. Earth Planet. Sci. Lett., 2003, 208(1–2): 1-11.

[91]

Susman S, Volin K J, Price D L, . Intermediate-Range Order in Permanently Densified Vitreous SiO2: A Neutron-Diffraction and Molecular-Dynamics Study. Physical Review B, 1991, 43(1): 1194-1197.

[92]

Suzuki A, Ohtani E, Terasaki H, . Viscosity of Silicate Melts in CaMgSi2O6-NaAlSi2O6 System at High Pressure. Physics and Chemistry of Minerals, 2005, 32(2): 140-145.

[93]

Terasaki H, Frost D J, Rubie D C, . The Effect of Oxygen and Sulphur on the Dihedral Angle between Fe-O-S Melt and Silicate Minerals at High Pressure: Implications for Martian Core Formation. Earth Planet. Sci. Lett., 2005, 232(3–4): 379-392.

[94]

Terasaki H, Suzuki A, Ohtani E, . Effect of Pressure on the Viscosity of Fe-S and Fe-C Liquids up to 16 GPa. Geophysical Research Letters, 2006, 33 L22307.

[95]

Terasaki H, Urakawa S, Funakoshi K, . Interfacial Tension Measurement of Ni-S Liquid Using High-Pressure X-Ray Micro-Tomography. High Pressure Research, 2008, 28(3): 327-334.

[96]

Terasaki H, Urakawa S, Funakoshi K, . In Situ Measurement of Interfacial Tension of Fe-S and Fe-P Liquids under High Pressure Using X-Ray Radiography and Tomography Techniques. Physics of the Earth and Planetary Interiors, 2009, 174(1–4): 220-226.

[97]

Thomas C W, Asimow P D. Direct Shock Compression Experiments on Premolten Forsterite and Progress toward a Consistent High-Pressure Equation of State for CaO-MgO-Al2O3-SiO2-FeO Liquids. Journal of Geophysical Research: Solid Earth, 2013, 118 11 2013JB010232.

[98]

Thomas C W, Asimow P D. Preheated Shock Experiments in the Molten CaAl2Si2O8-CaFeSi2O6-CaMgSi2O6 Ternary: A Test for Linear Mixing of Liquid Volumes at High Pressure and Temperature. Journal of Geophysical Research: Solid Earth, 2013, 118(7): 3354-3365.

[99]

Thorpe M F. Continuous Deformations in Random Networks. Journal of Non-Crystalline Solids, 1983, 57(3): 355-370.

[100]

Tinker D, Lesher C E, Baxter G M, . High-Pressure Viscometry of Polymerized Silicate Melts and Limitations of the Eyring Equation. American Mineralogist, 2004, 89(11–12): 1701-1708.

[101]

Tsuji K, Yaoita K, Imai M, . Measurements of X-Ray Diffraction for Liquid Metals under High Pressure. Review of Scientific Instruments, 1989, 60(7): 2425-2428.

[102]

Wang Y, Durham W B, Getting I C, . The Deformation-DIA: A New Apparatus for High Temperature Triaxial Deformation to Pressures up to 15 GPa. Review of Scientific Instruments, 2003, 74: 3002-3011.

[103]

Wang Y, Rivers M, Sutton S, . The Large-Volume High-Pressure Facility at GSECARS: A “Swiss-Army-Knife” Approach to Synchrotron-Based Experimental Studies. Physics of the Earth and Planetary Interiors, 2009, 174(1–4): 270-281.

[104]

Wang Y, Sakamaki T, Skinner L B, . Atomistic Insight into Viscosity and Density of Silicate Melts under Pressure. Nat. Commun., 2014, 5 3241.

[105]

Wang Y, Shen G, Rivers M L. Mills D M. High Pressure Research Techniques at Third Generation Synchrotron Radiation Sources. Third-Generation Hard X-Ray Synchrotron Radiation Sources, 2002 New York: John Wiley & Sons, 203-236.

[106]

Wang Y, Uchida T, Westferro F, . High-Pressure X-Ray Tomography Microscope: Synchrotron Computed Microtomography at High Pressure and Temperature. Review of Scientific Instruments, 2005, 40(21): 5763-5766.

[107]

Yamada A, Inoue T, Urakawa S, . In Situ X-Ray Experiment on the Structure of Hydrous Mg-Silicate Melt under High Pressure and High Temperature. Geophysical Research Letters, 2007, 34 10 L10303.

[108]

Yamada A, Wang Y, Inoue T, . High-Pressure X-Ray Diffraction Studies on the Structure of Liquid Silicate Using a Paris—Edinburgh Type Large Volume Press. Review of Scientific Instruments, 2011, 82(1): 15103-05107.

[109]

Zouboulis E, Grimsditch M, Ramdas A, . Temperature Dependence of the Elastic Moduli of Diamond: A Brillouin-Scattering Study. Physical Review B, 1998, 57 5 2889.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/