Body waves revealed by spatial stacking on long-term cross-correlation of ambient noise

Kai Wang , Yinhe Luo , Kaifeng Zhao , Limeng Zhang

Journal of Earth Science ›› 2014, Vol. 25 ›› Issue (6) : 977 -984.

PDF
Journal of Earth Science ›› 2014, Vol. 25 ›› Issue (6) : 977 -984. DOI: 10.1007/s12583-014-0495-6
Article

Body waves revealed by spatial stacking on long-term cross-correlation of ambient noise

Author information +
History +
PDF

Abstract

Theoretical and experimental studies indicate that complete Green’s Function can be retrieved from cross-correlation in a diffuse field. High SNR (signal-to-noise ratio) surface waves have been extracted from cross-correlations of long-duration ambient noise across the globe. Body waves, not extracted in most of ambient noise studies, are thought to be more difficult to retrieve from regular ambient noise data processing. By stacking cross-correlations of ambient noise in 50 km inter-station distance bins in China, western United States and Europe, we observed coherent 20–100 s core phases (ScS, PKIKPPKIKP, PcPPKPPKP) and crustal-mantle phases (Pn, P, PL, Sn, S, SPL, SnSn, SS, SSPL) at distances ranging from 0 to 4 000 km. Our results show that these crustal-mantle phases show diverse characteristics due to different substructure and sources of body waves beneath different regions while the core phases are relatively robust and can be retrieved as long as stations are available. Further analysis indicates that the SNR of these body-wave phases depends on a compromise between stacking fold in spatial domain and the coherence of pre-stacked cross-correlations. Spatially stacked cross-correlations of seismic noise can provide new virtual seismograms for paths that complement earthquake data and that contain valuable information on the structure of the Earth. The extracted crustal-mantle phases can be used to study lithospheric heterogeneities and the robust core phases are significantly useful to study the deep structure of the Earth, such as detecting fine heterogeneities of the core-mantle boundary and constraining differential rotation of the inner core.

Keywords

ambient noise / cross-correlation / body wave

Cite this article

Download citation ▾
Kai Wang, Yinhe Luo, Kaifeng Zhao, Limeng Zhang. Body waves revealed by spatial stacking on long-term cross-correlation of ambient noise. Journal of Earth Science, 2014, 25(6): 977-984 DOI:10.1007/s12583-014-0495-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bensen G D, Ritzwoller M H, Barmin M P, . Processing Seismic Ambient Noise Data to Obtain Reliable Broad-Band Surface Wave Dispersion Measurements. Geophysical Journal International, 2007, 169(3): 1239-1260.

[2]

Boué P, Poli P, Campillo M, . Teleseismic Correlations of Ambient Seismic Noise for Deep Global Imaging of the Earth. Geophysical Journal International, 2013, 194(2): 844-848.

[3]

Campillo M. Phase and Correlation in ‘Random’ Seismic Fields and the Reconstruction of the Green Function. Pure and Applied Geophysics, 2006, 163: 475-502.

[4]

Crotwell H P, Owens T J, Ritsema J. The TauP Toolkit: Flexible Seismic Travel-Time and Ray-Path Utilities. Seismological Research Letters, 1999, 70: 154-160.

[5]

Cupillard P, Stehly L, Romanowicz B. The One-Bit Noise Correlation: A Theory Based on the Concepts of Coherent and Incoherent Noise. Geophysical Journal International, 2011, 184(3): 1397-1414.

[6]

Draganov D, Campman X, Thorbecke J, . Reflection Images from Ambient Seismic Noise. Geophysics, 2009, 74(5): A63-A67.

[7]

Draganov D, Wapenaar K, Mulder W, . Retrieval of Reflections from Seismic Background-Noise Measurements. Geophysical Research Letters, 2007, 34 L043054

[8]

Fu Y V, Li A, Chen Y J. Crustal and Upper Mantle Structure of Southeast Tibet from Rayleigh Wave Tomography. Journal of Geophysical Research, 2010, 115 B12323

[9]

Gouédard P, Stehly L, Brenguier F, . Cross-Correlation of Random Fields: Mathematical Approach and Applications. Geophysical Prospecting, 2008, 56: 375-393.

[10]

Guo Z, Gao X, Wang W, . Upper- and Mid-Crustal Radial Anisotropy beneath the Central Himalaya and Southern Tibet from Seismic Ambient Noise Tomography. Geophysical Journal International, 2012, 189(2): 1169-1182.

[11]

Guo Z, Gao X, Yao H, . Midcrustal Low-Velocity Layer beneath the Central Himalaya and Southern Tibet Revealed by Ambient Noise Array Tomography. Geochemistry, Geophysics, Geosystems, 2009, 10 Q05007

[12]

Kennett B L N, Engdahl E R, Buland R. Constraints on Seismic Velocities in the Earth from Travel Times. Geophysical Journal International, 1995, 122: 108-124.

[13]

Larose E, Margerin L, Derode A, . Correlation of Random Wave-Fields: An Interdisciplinary Review. Geophysics, 2006, 71(4): SI11-SI21.

[14]

Li H, Liu X, Li X F, . Rayleigh Wave Group Velocity Distribution in Ningxia. Journal of Earth Science, 2011, 22(1): 117-123.

[15]

Li H, Su W, Wang C, . Ambient Noise Love Wave Tomography in the Eastern Margin of the Tibetan Plateau. Tectonophysics, 2010, 491(1–4): 194-204.

[16]

Lin F C, Ritzwoller M H, Townend J, . Ambient Noise Rayleigh Wave Tomography of New Zealand. Geophysical Journal International, 2007, 170(2): 649-666.

[17]

Lin F C, Tsai V C, Schmandt B, . Extracting Seismic Core Phases with Array Interferometry. Geophysical Research Letters, 2013, 40: 1-5.

[18]

Lobkis O I, Weaver R L. On the Emergence of the Green’s Function in the Correlations of a Diffuse Field. Journal of the Acoustical Society of United States, 2001, 110(6): 3011-3017.

[19]

Luo Y, Xu Y, Yang Y. Crustal Structure beneath the Dabie Orogenic Belt from Ambient Noise Tomography. Earth and Planetary Science Letters, 2012, 313/314: 12-22.

[20]

Luo Y, Xu Y, Yang Y. Crustal Radial Anisotropy beneath the Dabie Orogenic Belt from Ambient Noise Tomography. Geophysical Journal International, 2013, 195(2): 1149-1164.

[21]

Nakata N, Snieder R. Shear Wave Imaging from Traffic Noise Using Seismic. Geophysics, 2011, 76(6): SA97-SA106.

[22]

Nishida K. Global Propagation of Body Waves Revealed by Cross-Correlation Analysis of Seismic Hum. Geophysical Research Letters, 2013, 40: 1691-1696.

[23]

Poli P, Campillo M, Pedersen H, . Body-Wave Imaging of Earth’s Mantle Discontinuities from Ambient Seismic Noise. Science, 2012, 338(6110): 1063-1065.

[24]

Poli P, Campillo M, Pedersen H, . Emergence of Body Waves from Cross-Correlation of Short Period Seismic Noise. Geophysical Journal International, 2012, 188(2): 549-558.

[25]

Prieto G A, Denolle M, Lawrence J F, . On the Amplitude Information Carried by Ambient Seismic field. Comptes Rendus Geoscience, 2011, 343(8–9): 600-614.

[26]

Roux P. P-Waves from Cross-Correlation of Seismic Noise. Geophysical Research Letters, 2005, 32 19 L19303

[27]

Ruigrok E, Campman X, Wapenaar K. Basin Delineation with a 40-Hour Passive Seismic Record. Bulletin of the Seismological Society of America, 2012, 102(5): 2165-2176.

[28]

Shapiro N M, Campillo M. High Resolution Surface Wave Tomography from Ambient Seismic Noise. Science, 2005, 307: 1615-1618.

[29]

Shen Y, Ren Y, Gao H Y, . An Improved Method to Extract Very-Broadband Empirical Green’s Functions from Ambient Seismic Noise. Bulletin of the Seismological Society of America, 2012, 102(4): 1872-1877.

[30]

Snieder R. Extracting the Green’s Function from the Correlation of Coda Waves: A Derivation Based on Stationary Phase. Physical Review E, 2004, 69 046610

[31]

Song X D, Richards P G. Seismological Evidence for Differential Rotation of the Earth’s Inner Core. Nature, 1996, 382: 221-224.

[32]

Wapenaar K. Retrieving the Elastodynamic Green’s Function of an Arbitrary Inhomogeneous Medium by Cross Correlation. Physical Review Letters, 2004, 93 254301

[33]

Xu Z, Juhlin C, Gudmunsson O, . Reconstruction of Subsurface Structure from Ambient Seismic Noise: An Example from Ketzin, Germany. Geophysical Journal International, 2012, 189(2): 1085-1102.

[34]

Yang Y, Ritzwoller M H, Levshin A L, . Ambient Noise Rayleigh Wave Tomography across Europe. Geophysical Journal International, 2007, 168(1): 259-274.

[35]

Yang Y, Zheng Y, Chen J, . Rayleigh Wave Phase Velocity Maps of Tibet and the Surrounding Regions from Ambient Seismic Noise Tomography. Geochemistry, Geophysics, Geosystems, 2010, 11 Q08010

[36]

Yao H J, Van der Hilst R D, de Hoop M V. Surface-Wave Array Tomography in SE Tibet from Ambient Seismic Noise and Two-Station Analysis—I. Phase Velocity Maps. Geophysical Journal International, 2006, 166(2): 732-744.

[37]

Zeng X F, Ni S D. Constraining Shear Wave Velocity and Density Contrast at the Inner Core Boundary with PKiKP/P Amplitude Ratio. Journal of Earth Science, 2013, 24(4): 716-724.

[38]

Zhan Z, Ni S, Helmberger D V, . Retrieval of Moho-Reflected Shear Wave Arrivals from Ambient Seismic Noise. Geophysical Journal International, 2010, 182: 408-420.

[39]

Zheng X F, Yao Z X, Liang J H, . The Role Played and Opportunities Provided by IGP DMC of China National Seismic Network in Wenchuan Earthquake Disaster Relief and Researches. Bulletin of the Seismological Society of America, 2010, 100(5B): 2866-2872.

[40]

Zheng Y, Shen W, Zhou L, . Crust and Uppermost Mantle beneath the North China Craton, Northeastern China, and the Sea of Japan from Ambient Noise Tomography. Journal of Geophysical Research, 2011, 116 B12312

[41]

Zhou L, Xie J, Shen W, . The Structure of the Crust and Uppermost Mantle beneath South China from Ambient Noise and Earthquake Tomography. Geophysical Journal International, 2012, 189(3): 1565-1583.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/