Geochemical characteristics and new eruption ages of ruby-related basalts from southeast Kenya

Tawatchai Chualaowanich , Chakkaphan Sutthirat , Visut Pisuttha-Arnond , Christoph Hauzenberger , Chinghua Lo , Tongyi Lee , Punya Charusiri

Journal of Earth Science ›› 2014, Vol. 25 ›› Issue (5) : 799 -821.

PDF
Journal of Earth Science ›› 2014, Vol. 25 ›› Issue (5) : 799 -821. DOI: 10.1007/s12583-014-0482-y
Article

Geochemical characteristics and new eruption ages of ruby-related basalts from southeast Kenya

Author information +
History +
PDF

Abstract

Two ruby-related basaltic fields were recently discovered in the southeast region of Kenya, exposed in the Nguu and Ngulai Hills vicinities. These fields host abundant deep-seated xenoliths, including corundum-bearing granulites. The basalts are alkaline affinity having compositions from foidrite to basanite. The Ngulai basalts have a wider range of SiO2 (38.2 wt.%–44.8 wt.%) covering those of the Nguu basalts (38.7 wt.%–42.3 wt.%). This overlapping behavior also holds for other major oxides and trace elements, e.g., Al2O3, Na2O, K2O, Cr, Ni, Rb and Ga. The overall OIB-like incompatible patterns with strong K depletion and slight spike of Ti enrichment signatures imply low degrees of partial melting of the upper mantle region source induced under a mantle plume-related process. The K-depletion signature indicates a residual K-bearing phase still retained in the source domain. Chondrite-normalized REE patterns exhibiting strong LREE enrichment without Eu anomalies suggest that plagioclase fractionation is insignificant. New 40Ar/39Ar ages indicate eruption events occurred during the Pleistocene times, which are around 2 Ma for the Ngulai basalts and 0.9 to 1.6 Ma for the Nguu basalts. Clinopyroxene-basalt thermobarometric calculations yield the equilibrium P-T ranges of ∼8-29 kbar and 1 200–1 450 °C.

Keywords

ruby-related Cenozoic basalt / Ar/Ar age / corundum-bearing xenolith / Kenya / Nguu / Ngulai

Cite this article

Download citation ▾
Tawatchai Chualaowanich, Chakkaphan Sutthirat, Visut Pisuttha-Arnond, Christoph Hauzenberger, Chinghua Lo, Tongyi Lee, Punya Charusiri. Geochemical characteristics and new eruption ages of ruby-related basalts from southeast Kenya. Journal of Earth Science, 2014, 25(5): 799-821 DOI:10.1007/s12583-014-0482-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adam J, Green T H, Sie S H. Proton Microprobe Proton Microprobe Determined Partitioning of Rb, Sr, Ba, Y, Zr, and Ta between Experimentally Produced Amphiboles and Silicate Melts with Variable F Content. Chemical Geology, 1993, 109: 29-49.

[2]

Arndt N T, Christensen U. The Role of Lithospheric Mantle in Continental Flood Volcanism: Thermal and Geochemical Constraints. Journal of Geophysical Research, 1992, 97: 10967-10981.

[3]

Baker B H. Geology of the Southern Machakos District. Geological Survey of Kenya, Kenya. Report, 1954, 27: 1-40.

[4]

Beattie P. Olivine-Melt and Orthopyroxene-Melt Equilibria. Contributions to Mineralogy and Petrology, 1993, 115: 103-111.

[5]

Black S, MacDonald R, Barreiro B A, . Open System Alkaline Magmatism in Northern Kenya: Evidence from U-Series Disequilibria and Radiogenic Isotopes. Contributions to Mineralogy and Petrology, 1998, 131: 364-378.

[6]

Bosworth W. Off-Axis Volcanism in the Gregory Rift, East Africa: Implications for Models of Continental Rifting. Geology, 1987, 15: 397-400.

[7]

Bosworth W. Basin and Range Style Tectonics in East Africa. Journal of African Earth Sciences, 1989, 8: 191-201.

[8]

Burke K. The African Plate. South African Journal of Geology, 1996, 99: 341-409.

[9]

Chaffey D J, Cliff R A, Wilson B M. Saunders A D, Norry M J. Characterization of the St. Helena Magma Source. Magmatism in the Ocean Basins, 1989 Oxford: Blackwell Scientific, 257-276.

[10]

Chazot G, Menzies M A, Harte B. Determination of Partition Coefficients between Apatite, Clinopyroxene, Amphibole, and Melt in Natural Spinel Lherzolites from Yemen: Implications for Wet Melting of the Lithospheric Mantle. Geochimica et Cosmochimica Acta, 1996, 60: 423-437.

[11]

Chualaowanich T, Sutthirat C, Imsamut S, . New Sites of Ruby-Bearing Xenoliths and Eruption Age Constraint of the Host Basalts in SE Kenya. Proceedings of the 2nd International Gem and Jewelry Conference (GIT2008), Bangkok, 2008, 203.

[12]

Class C, Altherr R, Volker F, . Geochemistry of Pliocene to Quaternary Alkali Basalts from the Huri Hills, Northern Kenya. Chemical Geology, 1994, 113: 1-22.

[13]

Class C, Goldstein S L. Plume-Lithosphere Interactions in the Ocean Basin: Constraints from the Source Mineralogy. Earth and Planetary Science Letters, 1997, 150: 245-260.

[14]

Cox K G, Bell J D, Pankhurst R J. The Interpretation of Igneous Rocks, 1979 London: Allen and Unwin, 450

[15]

Dalpé C, Baker D R. Partition Coefficients for Rare-Earth Elements between Calcic Amphibole and Ti-Rich Basanitic Glass at 1.5 GPa, 1 100 °C. Mineralogical Magazine, 1994, 58A: 207-208.

[16]

Davies G R, MacDonald R. Crustal Influences in the Petrogenesis of the Naivasha Basalts-Comendite Complex: Combined Trace Element and Sr-Nd-Pb Isotope Constraints. Journal of Petrology, 1987, 28: 1009-1031.

[17]

Droop G T R. A General Equation for Estimating Fe3+ Concentrations in Ferromagnesian Silicates and Oxides from Microprobe Analyses Using Stochiometric Criteria. Mineralogical Magazine, 1987, 51: 43-54.

[18]

Freek-Parpatt M. Geochemical Characteristics of Basalts from the Lais-Merille Area (Northern Kenya). Sonderforschungsbereich 108 Spannung und Spannungsumwardlung in der Lithosphere. Berichtsband für die Jahre 1990–1992. Teil A. Universtat Karlsruhe, 1992, 139-159.

[19]

Frey F A, Green D H, Roy S D. Integrated Models of Basalt Petrogenesis: A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data. Journal of Petrology, 1978, 19: 463-513.

[20]

Furman T. Geochemistry of East African Rift Basalts: An Overview. Journal of African Earth Sciences, 2007, 48: 147-160.

[21]

Furman T. Melting of Metasomatized Subcontinental Lithosphere: Undersaturated Mafic Lavas from Rungwe, Tanzania. Contributions to Mineralogy and Petrology, 1995, 122: 97-115.

[22]

Gallagher K, Hawkesworth C. Dehydration Melting and the Generation of Continental Flood Basalts. Nature, 1992, 358: 57-59.

[23]

Guo F, Fan W, Wang Y, . Origin of Early Cretaceous Calc-Alkaline Lamprophyres from the Sulu Orogen in Eastern China: Implications for Enrichment Processes beneath Continental Collisional Belt. Lithos, 2004, 78: 291-305.

[24]

Hanan B B, Kingsley R H, Schilling J G. Pb Isotope Evidence in the South Atlantic for Migrating Ridge-Hotspot Interactions. Nature, 1986, 322: 137-144.

[25]

Hanson G N. Rare Earth Elements in Petrogenetic Studies of Igneous Rocks. Annual Review of Earth and Planetary Sciences, 1980, 8: 371-406.

[26]

Hart S R, Dunn T. Experimental Cpx/Melt Partitioning of 24 Trace Elements. Contributions to Mineralogy and Petrology, 1993, 113: 1-8.

[27]

Haug G H, Strecker M R. Volcano-Tectonic Evolution of the Chyulu Hills and Implications for the Regional Stress Field in Kenya. Geology, 1995, 23: 165-168.

[28]

Henjes-Kunst F, Altherr R. Metamorphic Petrology of Xenoliths from Kenya and Northern Tanzania and Implications for Geotherms and Lithospheric Structure. Journal of Petrology, 1992, 33: 1125-1156.

[29]

Helz R T, Thornber C R. Geothermometry of Kilauea Iki Lava Lake, Hawaii. Bulletin of Volcanology, 1987, 49: 451-668.

[30]

Johnson K T M, Dick H J B, Shimizu N. Melting in the Oceanic Upper Mantle: An Ion Microprobe Study of Diopsides in Abyssal Peridotites. Journal of Geophysical Research, 1990, 95: 2661-2678.

[31]

Karson J A, Curis P C. Tectonic and Magmatic Processes in the Eastern Branch of the East African Rift and Implications for Magmatically Active Continental Rifts. Journal of African Earth Sciences, 1989, 8: 431-453.

[32]

Kelemen P B, Shimizu N, Dunn T. Relative Depletion of Niobium in Some Arc Magmas and the Continental Crust: Partitioning of K, Nb, La and Ce during Melt/Rock Reaction in the Upper Mantle. Earth and Planetary Science Latters, 1993, 120: 111-134.

[33]

Latin D, Norry M J, Tarzey R J E. Magmatism in the Gregory Rift, East Africa: Evidence for Melt Generation by a Plume. Journal of Petrology, 1993, 34: 1007-1027.

[34]

Le Bas M J, Le Maitre R W, Streckeisen A, . A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 1986, 27: 745-750.

[35]

Le Roex A P, Cliff R A, Adair B J I. Tristan da Cunha, South Atlantic: Geochemistry and Petrogenesis of a Basanite-Phonolite Lava Series. Journal of Petrology, 1990, 31: 779-812.

[36]

Le Roex A P, Erlank A J, Needham H D. Geochemical and Mineralogical Evidence for the Occurrence of at Least Three District Magma Type in the ‘Famous’ Region. Contributions to Mineralogy and Petrology, 1981, 77: 24-37.

[37]

Le Roex A P, Spath A, Zartman R E. Lithospheric Thickness beneath the Southern Kenya Rift: Implications from Basalt Geochemistry. Contributions to Mineralogy and Petrology, 2001, 142: 89-106.

[38]

Lemarchand F, Villemant B, Calas G. Trace Elements Distribution Coefficients in Alkaline Series. Geochimica et Cosmochimica Acta, 1987, 51: 1071-1081.

[39]

Lo C H, Chung S L, Lee T Y, . Age of the Emeishan Flood Magmatism and Relations to Permian-Triassic Boundary Events. Earth and Planetary Science Letters, 2002, 198: 449-458.

[40]

MacDonald R, Rogers N W, Fitton J G, . Plume-Lithosphere Interactions in the Generation of the Basalts of the Kenya Rift, East Africa. Journal of Petrology, 2001, 42: 877-900.

[41]

McDonough W F, Sun S S. The Composition of the Earth. Chemical Geology, 1995, 120: 223-253.

[42]

McKenzie D, Bickle M J. The Volume and Composition of Melt Generated by Extension of the Lithosphere. Journal of Petrology, 1988, 29: 625-679.

[43]

McKenzie D, O’Nions R K. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 1991, 32: 1021-1091.

[44]

Mechie J, Keller G R, Prodehl C, . A Model for the Structure, Composition and Evolution of the Kenya Rift. Tectonophysics, 1997, 278: 95-119.

[45]

Miyashiro A. Nature of Alkali Volcanic Rock Series. Contributions to Mineralogy and Petrology, 1978, 66: 91-104.

[46]

Nimis P. A Clinopyroxene Geobarometer for Basaltic Systems Based on Crystal-Structure Modeling. Contributions to Mineralogy and Petrology, 1995, 121: 115-125.

[47]

Nimis P, Taylor W R. Single Clinopyroxene Thermobarometry for Garnet Peridotites. Part 1. Calibration and Testing of a Cr-in-Cpx Barometer and an Enstatite-in-Cpx Thermometer. Contributions to Mineralogy and Petrology, 2000, 139: 541-554.

[48]

Nimis P, Ulmer P. Clinopyroxene Geobarometry of Magmatic Rocks. Part 1. An Expanded Structural Geobarometer for Anhydrous and Hydrous Basic and Ultrabasic Systems. Contributions to Mineralogy and Petrology, 1998, 133: 122-135.

[49]

Novak O, Ritter J R R, Altherr R, . An Integrated Model for the Deep Structure of the Chyulu Hills Volcanic Field, Kenya. Tectonophysics, 1997, 278: 187-209.

[50]

Olafsson M, Eggler D H. Phase Relations of Amphibole, Amphibole-Carbonate and Phlogopite-Carbonate Peridotite: Petrologic Constraints on Asthenosphere. Earth and Planetary Science Letters, 1983, 64: 303-315.

[51]

Omenge J M, Okelo R E. Geology of the Chyulu-Oloitokitok Area. Geological Survey of Kenya, Kenya. Report, 1992, 112: 1-51.

[52]

Paslick C, Halliday A, James D, . Enrichment of the Continental Lithosphere by OIB Melts: Isotopic Evidence from the Volcanic Province of Northern Tanzania. Earth and Planetary Science Letters, 1995, 125: 277-292.

[53]

Pearce J A. Thorpe R S. Trace Element Characteristics of Lavas from Destructive Plate Margins. Andesites: Orogenic Andesites and Related Rocks, 1982 England: Wiley, 525-548.

[54]

Putirka K D, Johnson M, Kinzler R, . Thermobarometry of Mafic Igneous Rocks Based on Clinopyroxene-Liquid Equilibria, 0-30 kbar. Contributions to Mineralogy and Petrology, 1996, 123: 92-108.

[55]

Putirka K D, Mikaelian H, Ryerson F, . New Clinopyroxene-Liquid Thermo-Barometers for Mafic, Evolved, and Volatile-Bearing Lava Compositions with Applications to Lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist, 2003, 88: 1542-1554.

[56]

Putirka K D, Perfit M, Ryerson F J, . Ambient and Excess Mantle Temperatures, Olivine Thermometry, and Active Vs. Passive Upwelling. Chemical Geology, 2007, 241: 177-206.

[57]

Ritter J R R, Fuchs K, Kaspar T, . Seismic Images Illustrate the Deep Roots of the Chyulu Hills Volcanic Area, Kenya. EOS Transactions (American Geophysical Union), 1995, 76: 273-278.

[58]

Ritter J R R, Kaspar T. A Tomography Study of the Chyulu Hills, Kenya. Tectonophysics, 1997, 278: 149-169.

[59]

Rollinson H. Using Geochemical Data: Evaluation, Presentation, Interpretation, 1993 Singapore: Longman Scientific & Technical, 352.

[60]

Rudnick R L, McDonough W F, Chappell B W. Carbonatite Metasomatism in the Northern Tanzanian Mantle: Petrographic and Geochemical Characteristics. Earth and Planetary Science Letters, 1993, 114: 463-475.

[61]

Saggerson, E. P., 1963. Geology of the Simba-KIbwezi Area. Geological Survey of Kenya, Nairobi. Report 58. 70

[62]

Sato K, Katsura T, Ito E. Phase Relations of Natural Phlogopite with or without Enstatite up to 8 GPa: Implications for Mantle Metasomatism. Earth and Planetary Science Letters, 1997, 146: 511-526.

[63]

Sisson T W, Grove T L. Temperatures and H2O Contents of Low-MgO High-Alumina Basalts. Contributions to Mineralogy and Petrology, 1992, 113: 167-184.

[64]

Smith M. Stratigraphic and Structural Constraints on Mechanism of Active Rifting in the Gregory Rift, Kenya. Tectonophysics, 1994, 236: 3-22.

[65]

Spath A, le Roex A P, Opiyo-Akech N. The Petrology of the Chyulu Hills Volcanic Province, Southern Kenya. Journal of African Earth Sciences, 2000, 31: 337-358.

[66]

Spath A, Le Roex A P, Opiyo-Akech N. Plume-Lithosphere Interaction and the Origin of Continental Rift-Related Alkaline Volcanism—The Chyulu Hills Volcanic Province, Southern Kenya. Journal of Petrology, 2001, 42: 765-787.

[67]

Sun S S, Hanson G N. Origin of Ross Island Basanitoids and Limitations upon the Heterogeneity of Mantle Sources for Alkali Basalts and Nephelinites. Contributions to Mineralogy and Petrology, 1975, 52: 77-106.

[68]

Sun S S, McDonough W F. Chemical and Isotopic Systematic of Oceanic Basalts: Implications for Mantle Composition and Processes. Magmatism in Ocean Basins. Geological Society London, Special Publications, 1989, 42: 313-345.

[69]

Sutthirat C. New Basalt-Related Ruby Deposit in Simba Area, SE Kenya. Proceedings of a Seminar on Sustainable Advanced on Technology Applied to Thai Gem, Bangkok, 2007, 41-49.

[70]

Tsuruta K, Takahashi E. Melting Study of an Alkali Basalt JB-1 up to 12.5 GPa: Behavior of Potassium in the Deep Mantle. Physics of the Earth and Planetary Interiors, 1998, 107: 119-130.

[71]

Turner S, Hawkesworth C, Gallagher K, . Mantle Plumes, Flood Basalts, and Thermal Models for Melt Generation beneath Continents: Assessment of a Conductive Heating Model and Application to the Paraná. Journal of Geophysical Research, 1996, 101: 11503-11518.

[72]

Walsh J. Geology of the Lkutha Area. Geological Survey of Kenya, Kenya. Report, 1963, 56: 1-37.

[73]

White R, McKenzie D. Magmatism at Rift Zones: the Generation of Volcanic Continental Margins and Flood Basalts. Journal of Geophysical Research, 1989, 94: 7685-7729.

[74]

Wilson M. Igneous Petrogenesis, 1989 London: Unwin and Hyman, 466

[75]

Wood D A. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature, of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 1980, 50: 11-30.

[76]

Yang J H, Chung S L, Wilde S A, . Petrogenesis of Post-Orogenic Syenites in the Sulu Orogenic Belt, East China: Geochronological, Geochemical and Nd-Sr Isotopic Evidence. Chemical Geology, 2005, 214: 99-125.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/