Boron isotopic fractionation and trace element incorporation in various species of modern corals in Sanya Bay, South China Sea

Haizhen Wei, Shaoyong Jiang, Yingkai Xiao, N. Gary Hemming

Journal of Earth Science ›› 2014, Vol. 25 ›› Issue (3) : 431-444.

Journal of Earth Science ›› 2014, Vol. 25 ›› Issue (3) : 431-444. DOI: 10.1007/s12583-014-0438-2
Article

Boron isotopic fractionation and trace element incorporation in various species of modern corals in Sanya Bay, South China Sea

Author information +
History +

Abstract

The boron isotope paleo-pH proxy has been extensively studied due to its potential for understanding past climate change, and further calibrations were considered for accurate applications of the proxy because of significant variability related to biocarbonate microstructure. In this work, we studied the boron isotopic fractionation between modern marine corals and their coexisting seawater collected along shallow area in Sanya Bay, South China Sea. The apparent partition coefficient of boron (KD) ranged from 0.83×10−3 to 1.69×10−3, which are in good agreement with previous studies. As the analyzed coral skeleton (∼5 g) spanned the growth time period of 1–2 years, we discussed the boron isotopic fractionation between pristine corals and modern seawater using the annual mean seawater pH of 8.12 in this sea area. Without taking the vital effect into account, (11B/10B)coral values of all living corals spread over the curves of (11B/10B)borate vs. (11B/10B)sw with the α 4−3 values ranging from 0.974 to 0.982. After calibrating the biological effect on the calcifying fluid pH, the field-based calcification on calcifying fluid pH (i.e., Δ(pHbiol-pHsw)) for coral species of Acropora, Pavona, Pocillopora, Faviidae, and others including Proites are 0.42, 0.33, 0.36, 0.19, respectively, and it is necessary to be validated by coral culturing experiment in the future. Correlations in B/Ca vs. Sr/Ca and B/Ca vs. pHbiol approve temperature and calcifying fluid pH influence on skeletal B/Ca. Fundamental understanding of the thermodynamic basis of the boron isotopes in marine carbonates and seawater will strengthen the confidence in the use of paleo-pH proxy as a powerful tool to monitor atmospheric CO2 variations in the past.

Keywords

boron isotope / paleo-pH proxy / boron isotopic fractionation / trace element / modern coral

Cite this article

Download citation ▾
Haizhen Wei, Shaoyong Jiang, Yingkai Xiao, N. Gary Hemming. Boron isotopic fractionation and trace element incorporation in various species of modern corals in Sanya Bay, South China Sea. Journal of Earth Science, 2014, 25(3): 431‒444 https://doi.org/10.1007/s12583-014-0438-2

References

Aggarwal J K, Bohm F, Foster G, . How well do Non-Traditional Stable Isotope Results Compare between Different Laboratories: Results from the Interlaboratory Comparison of Boron Isotope Measurements. Journal of Analytical Atomic Spectrometry, 2009, 24: 825-831.
CrossRef Google scholar
Allen K A, Hönisch B, Eggins S M, . Controls on Boron Incorporation in Cultured Tests of the Planktic Foraminifer Orbulina Universa. Earth and Planetary Science Letters, 2011, 309: 291-301.
CrossRef Google scholar
Allison N, Finch A A. δ11B, Sr, Mg and B in a Modern Porites Coral: The Relationship between Calcification Site pH and Skeletal Chemistry. Geochimica et Cosmochimica Acta, 2010, 74: 1790-1800.
CrossRef Google scholar
Byrne R H, Yao W S, Klochko K, . Experimental Evaluation of the Isotopic Exchange Equilibrium 10B(OH)3+11B(OH)4 =11B(OH)3+10B(OH)4 in Acqueous Solution. Deep-Sea Research Part I—Oceanographic Research Papers, 2006, 53: 684-688.
CrossRef Google scholar
Che Z W. Monitoring and Analysis of Key Water Quality Parameters in Sanya Bay. Natural Science Journal of Hainan University, 2007, 25: 297-305.
Cohen A L, Gaetani G A, Lundalv T, . Compositional Variability in a Cold-Water Scleractinian, Lophelia Pertusa: New Insights into “Vital Effects”. Geochemistry, Geophysics, Geosystems, 2006, 7 Q12004
CrossRef Google scholar
Corrège T. Sea Surface Temperature and Salinity Reconstruction from Coral Geochemical Tracers. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232: 408-428.
CrossRef Google scholar
Douville E, Paterne M, Cabioch G, . Abrupt Sea Surface pH Change at the End of the Younger Dryas in the Central Sub-Equatorial Pacific Inferred from Boron Isotope Abundance in Corals (Porites). Biogeosciences Discussions, 2010, 7: 1959-1993.
CrossRef Google scholar
Foster G L. Seawater pH, pCO2 and [CO3 2−] Variations in the Caribbean Sea over the Last 130 kyr: A Boron Isotope and B/Ca Study of Pplanktic Foraminifera. Earth and Planetary Science Letters, 2008, 271: 254-266.
CrossRef Google scholar
Foster G L, Pogge von Strandmann P A E, Rae J W B. Boron and Magnesium Isotopic Composition of Seawater. Geochemistry, Geophysics, Geosystems, 2010, 11 Q08015
CrossRef Google scholar
Gagnon A C, Adkins J F, Fernandez D P, . Sr/Ca and Mg/Ca Vital Effects Correlated with Skeletal Architecture in a Scleractinian Deep-Sea Coral and the Role of Rayleigh Fractionation. Earth and Planetary Science Letters, 2007, 261: 280-295.
CrossRef Google scholar
Gaillardet J. Evaporation and Sublimation of Boric Acid: Application for Boron Purification from Organic Rich Solution. Geostandards Newsletter—The Journal of Geostandards and Geoanalysis, 2001, 25: 67-75.
CrossRef Google scholar
Gaillardet J, Allègre C. Boron Isotopic Compositions of Coral: Seawater or Diagenesis Record?. Earth and Planetary Science Letters, 1995, 136: 665-676.
CrossRef Google scholar
Gonfiantini R. Intercomparison of Boron Isotope and Concentration Measurements. Part II: Evaluation of Results. Geostandards Newsletter—The Journal of Geostandards and Geoanalysis, 2003, 27(1): 41-57.
CrossRef Google scholar
Hemming N G, Guilderson T P, Fairbanks R G. Seasonal Variations in the Boron Isotopic Composition of Coral: A Productivity Signal?. Global Biogeochemistry, 1998, 12: 581-586.
CrossRef Google scholar
Hemming N G, Hanson G N. Boron Isotopic Composition and Concentration in Modern Marine Carbonates. Geochimica et Cosmochimica Acta, 1992, 56: 537-543.
CrossRef Google scholar
Hemming N G, Reeder R J, Hanson G N. Mineral-Fluid Partitioning and Isotopic Fractionation of Boron in Synthetic Calcium Carbonate. Geochimica et Cosmochimica Acta, 1995, 59: 371-379.
CrossRef Google scholar
Hönisch B, Hemming N G, Archer D, . Atmospheric Carbon Dioxide Concentration across the Mid-Pleistocene Transition. Science, 2009, 324: 1551-1553.
CrossRef Google scholar
Jiang S Y, Palmer M R, Yeats C. Chemical and Boron Isotopic Compositions of Tourmaline from the Archean Big Bell and Mount Gibson Gold Deposits, Murchison Province, Yilgarn Craton, Western Australia. Chemical Geology, 2002, 188(3): 229-247.
CrossRef Google scholar
Kakihana H, Kotaka M. Equilibrium Constants for Boron Isotope-Exchange Reactions. Bulletin of the Research Laboratory for Nuclear Reactors, 1977, 2: 1-12.
Kakihana H, Kotaka M, Satoh S, . Fundamental Studies on the Ion-Exchange Separation of Boron Isotopes. Bulletin of the Chemical Society of Japan, 1977, 50: 158-163.
CrossRef Google scholar
Klochko K, Kaufman A J, Yao W, . Experimental Measurement of Boron Isotope Fractionation in Seawater. Earth and Planetary Science Letters, 2006, 248(1–2): 276-285.
CrossRef Google scholar
Kloppmann W, Vengosh A, Guerrot C. Monitoring Reverse Osmosis Treated Wastewater Recharge into a Coastal Aquifer by Environmental Isotopes (B, Li, O, H). Environmental Science & Technology, 2008, 42(23): 8759-8765.
CrossRef Google scholar
Lea D W, Mashiotta T A, Spero H J. Control on Magnesium and Strontium Uptake in Planktonic Foraminfera Determined by Live Culturing. Geochimica et Cosmochimica Acta, 1999, 63: 2369-2379.
CrossRef Google scholar
Lécuyer C, Grandjean P, Reynard B, . 11B/10B Analysis of Geological Materials by ICP-MS Plasma 54. Chemical Geology, 2002, 186: 45-55.
CrossRef Google scholar
Lee K, Kim T W, Byrne R H, . The Universal Ratio of Boron to Chlority for the North Pacific and North Atlantic Oceans. Geochimica et Cosmochimica Acta, 2010, 76(6): 1801-1811.
CrossRef Google scholar
Lemarchand D, Gaillardet J, Lewin E, . The Influence of Rivers on Marine Boron Isotopes and Implication for Reconstructing Past Ocean pH. Nature, 2000, 408: 951-954.
CrossRef Google scholar
Lemarchand D, Gaillardet J, Lewin, . Boron Isotope Systematic in Large Rivers: Implications for the Marine Boron Budget and Paleo-pH Reconstruction over the Cenozoic. Chemical Geology, 2002, 190: 123-140.
CrossRef Google scholar
Liu Y, Liu W G, Peng Z C, . Instability of Seawater pH in the South China Sea during the Mid-Late Holocene: Evidence from Boron Isotopic Composition of Corals. Geochimica et Cosmochimica Acta, 2009, 73: 1264-1272.
CrossRef Google scholar
Liu Y, Tossell J A. Ab initio Molecular Orbital Calculations for Boron Isotope Fractionations on Boric Acids and Borates. Geochimica et Cosmochimica Acta, 2005, 69: 3995-4006.
CrossRef Google scholar
McCoy S J, Robinson L F, Pfister C A, . Exploring B/Ca as a pH Proxy in Bivalves: Relationships between Mytilus Californianus B/Ca and Environmental Data from the Northeast Pacific. Biogeosciences Discussions, 2011, 8: 5587-5616.
CrossRef Google scholar
Mitsuguchi T, Uchida T, Matsumoto E, . Variations in Mg/Ca, Na/Ca, and Sr/Ca Ratios of Coral Skeletons with Chemical Treatments: Implications for Carbonate Geochemistry. Geochimica et Cosmochimica Acta, 2001, 65: 2865-2874.
CrossRef Google scholar
Mucci A, Morse J W. The Incorporation of Mg2+ and Sr2+ into Cal-Cite Overgrowths Influence of Growth Rate and Solution Composition. Geochimica et Cosmochimica Acta, 1983, 47: 217-233.
CrossRef Google scholar
Oi T. Calculations of Reduced Partition Function Ratios of Monomeric and Dimeric Boric Acids and Borates by the Ab initio Molecular Orbital Theory. Journal of Nuclear Science and Technology, 2000, 37: 166-172.
CrossRef Google scholar
Oi T. Ab initio Orbital Calculations of Reduced Partition Function Ratios of Polyboric Acids and Borate Anions. Zeitschrift für Naturforschung B. A Journal of Chemical Sciences, 2000, 55: 623-628.
Oi T, Kato J, Ossaka T, Kakihana H. Boron Isotopic Fractionation Accompanying Boron Mineral Formation from Aqueous Boric Acid-Sodium Hydroxide Solutions at 25 °C. Geochemical Journal, 1991, 25: 377-385.
CrossRef Google scholar
Oi T, Yanase S. Calculations of Reduced Partition Function Ratios of Hydrated Monoborate Anion by the Ab initio Molecular Orbital Theory. Journal of Nuclear Science and Technology, 2001, 38: 429-432.
CrossRef Google scholar
Pagani M, Lemarchand D, Spivack A, . A Critical Evaluation of the Boron Isotope-pH Proxy: The Accuracy of Ancient Ocean pH Estimates. Geochimica et Cosmochimica Acta, 2005, 69(4): 953-961.
CrossRef Google scholar
Palmer M R, Pearson P N. A 23 000-Year Record of Surface Water pH and pCO2 in the Western Equatorial Pacific Ocean. Science, 2003, 300: 480-482.
CrossRef Google scholar
Palmer M R, Pearson P N, Cobb S J. Reconstructing Past Ocean pH-Depth Profiles. Science, 1998, 282: 1468-1471.
CrossRef Google scholar
Palmer M R, Spivack A J, Edmond J M. Temperature and pH Controls over Isotopic Fractionation during Adsorption of Boron on Marine Clay. Geochimica et Cosmochimica Acta, 1987, 51: 2319-2323.
CrossRef Google scholar
Pelejero C, Calvo E, McCulloch M T, . Preindustrial to Modern Interdecadal Variability in Coral Reef pH. Science, 2005, 309: 2204-2207.
CrossRef Google scholar
Petelet-Giraud E, Klaver G, Negrel P. Natural Versus Anthropogenic Sources in the Surface and Groundwater Dissolved Load of the Dommel River (Meuse Basin): Constraints by Boron and Strontium Isotopes and Gadolinium Anomaly. Journal of Hydrology, 2009, 369: 336-349.
CrossRef Google scholar
Pingitore N F J, Eastman M P. The Coprecipitation of Sr2+ with Calcite at 25 °Cand 1 Atm. Geochimica et Cosmochimica Acta, 1986, 50: 2195-2203.
CrossRef Google scholar
Rae J W B, Foster G L, Schmidt D N, . Boron Isotopes and B/Ca in Benthic Foraminifera: Proxies for the Deep Ocean Carbonate System. Earth and Planetary Science Letters, 2011, 302: 403-413.
CrossRef Google scholar
Reynaud S, Hemming N G, Juillet-Leclerc A, . Effect of pCO2 and Temperature on the Boron Isotopic Composition of a Zooxanthellate Coral: Acropora sp. Coral Reefs, 2004, 23: 539-546.
Rollion-Bard C, Dominique Blamart D, Trebosc J, . Boron Isotopes as pH Proxy: A New Look at Boron Speciation in Deep-Sea Corals Using 11B MAS NMR and EELS. Geochimica et Cosmochimica Acta, 2011, 75: 1003-1012.
CrossRef Google scholar
Rose E, Chaussidon M, France-Lanord C. Fractionation of Boron Isotopes during Erosion Processes: The Example of Himalayan Rivers. Geochimica et Cosmochimica Acta, 2000, 64: 397-408.
CrossRef Google scholar
Rustad J R, Bylaska E J. Ab initio Calculation of Isotopic Fractionation in B(OH)3(aq) and B(OH)4 (aq). Journal of the American Chemical Society, 2007, 129(8): 2222-2223.
CrossRef Google scholar
Rustad J, Bylaska E, Jackson V D, . Calculation of Boron-Isotope Fractionation between B(OH)3(aq) and B(OH)4 (aq). Geochimica et Cosmochimica Acta, 2010, 74(10): 2843-2850.
CrossRef Google scholar
Sanchez-Valle C, Reynard B, Daniel I, . Boron Isotopic Fractionation between Minerals and Fluids: New Insights from In Situ High Pressure-High Temperature Vibrational Spectroscopic Data. Geochimica et Cosmochimica Acta, 2005, 69: 4301-4313.
CrossRef Google scholar
Sanyal A, Bijma J, Spero H J, . Empirical Relationship between pH and the Boron Isotopic Composition of Globigerinoides Sacculifer: Implications for the Boron Isotope Paleo-pH Proxy. Paleoceanography, 2001, 16(5): 515-519.
CrossRef Google scholar
Sanyal A, Hemming N G, Broecker W S, . Oceanic pH Control on the Boron Isotopic Composition of Foraminifera: Evidence from Culture Experiments. Paleoceanography, 1996, 11(5): 513-517.
CrossRef Google scholar
Sanyal A, Hemming N G, Hanson G N, . Evidence for a Higher pH in the Glacial Ocean from Boron Isotopes in Foraminifera. Nature, 1995, 373: 234-236.
CrossRef Google scholar
Sanyal A, Nugent M, Reeder R J, . Seawater pH Control on the Boron Isotopic Composition of Calcite: Evidence from Inorganic Calcite Precipitation Experiments. Geochimica et Cosmochimica Acta, 2000, 64(9): 1551-1555.
CrossRef Google scholar
Shi Q, Zhang Y, Sun D. Characteristics of Growth Rate of Porites Coral from Sanya, Hainan Island and Its Relationship to Environmental Variables. Marine Science Bulletin, 2002, 21: 31-38.
Sonoda A, Makita Y, Ooi K, . pH-Dependence of the Fractionation of Boron Isotopes with N-Methyl-D-Glucamine Resin in Aqueous Solution Systems. Bulletin of the Chemical Society of Japan, 2000, 73: 1131-1133.
CrossRef Google scholar
Spivack A J, Edmond J M. Boron Isotope Exchange between Seawater and the Oceanic Crust. Geochimica et Cosmochimica Acta, 1987, 51(5): 1033-1043.
CrossRef Google scholar
Spivack A J, You C F. Boron Isotopic Geochemistry of Carbonates and Pore Waters, Ocean Drilling Program Site 851. Earth and Planetary Science Letters, 1997, 152: 113-122.
CrossRef Google scholar
Spivack A J, You C F, Smith H J. Foraminiferal Boron Isotope Ratios as a Proxy for Surface Ocean pH over the Past 21 Myr. Nature, 1993, 363: 149-151.
CrossRef Google scholar
Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Presented in Sedimentary Rock, 1985 Oxford: Blackwell, 312.
Tonarini S, Dantonio M. Geochemical and B-Sr-Nd Isotopic Evidence for Mingling and Mixing Processes in the Magmatic System that Fed the Astroni Volcano (4.1–3.8 ka) within the Campi Flegrei Caldera (Southern Italy). Lithos, 2009, 107: 135-151.
CrossRef Google scholar
Trotter J, Montagna P, McCulloch M, . Quantifying the pH ‘Vital Effect’ in the Temperate Zooxanthellate Coral Cladocora Caespitosa: Validation of the Boron Seawater pH Proxy. Earth and Planetary Science Letters, 2011, 303: 163-173.
CrossRef Google scholar
Tyrrell T, Zeebe R E. History of Carbonate Ion Concentration over the Last 100 Million Years. Geochimica et Cosmochimica Acta, 2004, 68: 3521-3530.
CrossRef Google scholar
Vengosh A, Kolodny Y, Starinsky A, . Coprecipitation and Isotopic Fractionation of Boron in Modern Biogenic Carbonates. Geochimica et Cosmochimica Acta, 1991, 55: 2901-2910.
CrossRef Google scholar
Wang Q Z, Xiao Y K, Wang Y H, . Boron Separation by the Two Step Ion-Exchange for the Isotopic Measurement of Boron. Chinese Journal of Chemistry, 2002, 20: 45-50.
CrossRef Google scholar
Wei G, McCulloch M T, Mortimer G, . Evidence for Ocean Acidification in the Great Barrier Reef of Australia. Geochimica et Cosmochimica Acta, 2009, 73: 2332-2346.
CrossRef Google scholar
Xiao Y K, Beary E S, Fassett J D. An Improved Method for the High-Precision Isotopic Measurement of Boron by Thermal Ionization Mass Spectrometry. International Journal of Mass Spectrometry and Ion Processes, 1988, 85: 203-213.
CrossRef Google scholar
Xiao Y K, Liao B Y, Liu W G, . Ion Exchange Extraction of Boron from Aqueous Fluids by Amberlite IRA 743 Resin. Chinese Journal of Chemistry, 2003, 21: 1073-1079.
Yang Z H, Zhang N, Dong J X, . Carbon Oxygen Isotope Analysis and Its Significance of Carbonate in the Zhaogezhuang Section of Early Ordovician in Tangshan, North China. Journal of Earth Science, 2013, 24(6): 918-934.
CrossRef Google scholar
Yu J M, Foster G L, Elderfield H, . An Evaluation of Benthic Foraminiferal B/Ca and δ11B for Deep Ocean Carbonate Ion and pH Reconstructions. Earth and Planetary Science Letters, 2010, 293: 114-120.
CrossRef Google scholar
Yu J M, Elderfield H. Benthic Foraminiferal B/Ca Ratios Reflect Deepwater Carbonate Saturation State. Earth and Planetary Science Letters, 2007, 258(1–2): 73-86.
CrossRef Google scholar
Zeebe R E. Stable Boron Isotope Fractionation between Dissolved B(OH)3 and B(OH)4 . Geochimica et Cosmochimica Acta, 2005, 69: 2753-2766.
CrossRef Google scholar
Zhang Y, Dawe R A. Influence of Mg2+ on the Kinetics of Calcite Precipitation and Calcite Crystal Morphology. Chemical Geology, 2000, 163: 129-138.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/