Zn-rich spinel in association with quartz in the al-rich metapelites from the Mashan khondalite series, NE China

Xinzhuan Guo , Akira Takasu , Yongjiang Liu , Weimin Li

Journal of Earth Science ›› 2014, Vol. 25 ›› Issue (2) : 207 -223.

PDF
Journal of Earth Science ›› 2014, Vol. 25 ›› Issue (2) : 207 -223. DOI: 10.1007/s12583-014-0428-4
Article

Zn-rich spinel in association with quartz in the al-rich metapelites from the Mashan khondalite series, NE China

Author information +
History +
PDF

Abstract

Al-rich metapelites from the Mashan khondalite series are characterized by the assemblage Spl+Grt+Sil+Crd+Bt+Pl (An72)+Kfs+Quartz+graphite. Large amounts of spinel+quartz assemblages occur as inclusions in garnet and prismatic sillimanite in the Al-rich metapelites of the Mashan complex, NE China. The chemical composition of spinel is characterized by Zn-rich (X Zn=0.33–0.40. X Zn=Zn/Zn+Mg+Fe*) (Fe*=Fe2++Fe3+) and Fe3+ rich (up to 0.31 p.f.u.). The characteristic chemical composition and the mineral association indicated that the formation of spinel and quartz assemblage may be due to the breakdown of Zn-rich staurolite. The geothermobarometers studies show that the peak temperature of the Mashan complex is around 820 °C and the peak pressures is 8.0 kbar. The Mashan complex shows a typical orogen style P-T path.

Keywords

Al-rich metapelites / Mashan complex / khondalite / spinel+quartz / granulite

Cite this article

Download citation ▾
Xinzhuan Guo, Akira Takasu, Yongjiang Liu, Weimin Li. Zn-rich spinel in association with quartz in the al-rich metapelites from the Mashan khondalite series, NE China. Journal of Earth Science, 2014, 25(2): 207-223 DOI:10.1007/s12583-014-0428-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ackermand D, Herd R K, Reinhardt M, . Sapphirine Parageneses From the Caraiba Complex, Bahai, Brazil: the Influence of Fe2+-Fe3+ Distribution on the Stability of Sapphirine in Natural Assemblages. Journal of Metamorphic Geology, 1987, 5: 323-339.

[2]

Albee A. Metamorphism of Pelitic Rocks: Reaction Relations of Chloritoid and Staurolite. Bulletin Geological Society of America, 1972, 83: 3249-3268.

[3]

Atkin B. Hercynite as a Breakdown Product of Staurolite from within the Aureole of the Ardara Pluton, Co, Donegal, Eire. Mineralogical Magazine, 1978, 42: 237-239.

[4]

Barbosa J, Nicollet C, Leite C, . Hercynite-Quartz-Bearing Granulites from Brejões Dome Area, Jequié Block, Bahia, Brazil: Influence of Charnockite Intrusion on Granulite Facies Metamorphism. Lithos, 2006, 92: 537-556.

[5]

Bhattacharya A, Mohanty L, Maji A, . Non-Ideal Mixing in the Phlogopite-Annite Binary: Constraints from Experimental Data on Mg-Fe Partitioning and Formation of the Biotite-Garnet Geothermometer. Contributions to Mineralogy and Petrology, 1992, 111: 87-93.

[6]

Bose S, Fukuoka M, Sengupta P, . Evolution of High-Mg-Al Granulites from Sunkarametta, Eastern Ghats, India: Evidence for a Lower Crustal Heating-Cooling Trajectory. Journal of Metamorphic Geology, 2000, 18: 223-240.

[7]

Dasgupta S, Sengupta P, Ehl J, . Reaction Textures in a Suite of Spinel Granulites from the Eastern Ghats Belt, India: Evidence for Polymetamorphism, a Partial Petrogenetic Grid in the System KFMASH and the Roles of ZnO and Fe2O3. Journal of Petrology, 1995, 36: 435-461.

[8]

Dietforst E. Biotite Breakdown and the Formation of Gahnite in Metapelitic Rocks from Kemio, Southwest Finland. Contributions to Mineralogy and Petrology, 1980, 75: 327-337.

[9]

Ellis D, Sheraton J, England R, . Osumilit-Sapphirine-Quartz Granulites from Enderby Land, Antarctica-mineral Assemblages and Reactions. Contributions to Mineralogy and Petrology, 1980, 72: 123-143.

[10]

Frost B R, Chacko T. The Granulite Uncertainty Principle: Limitations on Thermobarometry in Granulites. Journal of Geology, 1989, 97: 435-450.

[11]

Fuhrman M, Lindsley D. Ternary Feldspar Modeling and Thermometry. American Mineralogist, 1988, 73: 201-215.

[12]

Griffen D, Ribbe P. The Crystal Chemistry of Staurolite. American Journal of Science, 1973, 273-A: 479-495.

[13]

Harley S L. Garnet-Orthopyroxene Bearing Granlites from Enderby Land, Antarctica: Metamorphic Pressure-Temperature-Time Evolution of the Archaean Napier complex. Journal of Petrology, 1985, 26: 819-856.

[14]

Harley SL. On the Occurrence and Characterization of Ultrahigh-Temperature Crustal Metamorphism. Geological Society, London, Special Publications, 1998, 138: 81-107.

[15]

Harley S L. Refining the P-T Records of UHT Crustal Metamorphism. Journal of Metamorphic Geology, 2008, 26: 125-154.

[16]

Harris N B W, Holland T J B. The Significance of Cordierite-Hypersthene Assemblages from the Beitbridge Region of the Central Limpopo Belt: Evidence for Rapid Decompression in the Archean?. American Mineralogist, 1984, 69: 1036-1049.

[17]

Henry D, Guidotti C, Thomson J. The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites: Implications for Geothermometry and Ti-Substitution Mechanism. American Mineralogist, 2005, 90: 316-328.

[18]

Hensen B J. Theoretical Phase Relations Involving Garnet and Cordierite Revisited: the Influence of Oxygen Fugacity on the Stability of Sapphirine and Spinel in the System Mg-Fe-Al-Si-O. Contributions to Mineralogy and Petrology, 1986, 92: 362-367.

[19]

Hodges K, Spear F. Geothermometry, Geobarometry, and the Al2SiO5 Triple Point at Mt. Moosilauke, New Hampshire. American Mineralogist, 1982, 67: 1118-1134.

[20]

Holland T, Powell R. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 1998, 16: 309-343.

[21]

Jiang J. Peak Regional Metamorphism of the Khondalite Series of the Mashan Complex and Its Evolution. Acta Petrologica et Mineralogica, 1992, 11: 97-108.

[22]

Kelsey D. On Ultrahigh-Temperature Crustal Metamorphism. Gondwana Research, 2008, 13: 1-29.

[23]

Kretz R. Symbols for Rock-Forming Minerals. American Mineralogist, 1983, 68: 277-279.

[24]

Morimoto T, Santosh M, Tsunogae T, . Spinel+Quartz Association from the Kerala Khondalites, Southern India: Evidence for Ultrahigh-Temperature Metamorphism. Journal of Mineralogical and Petrological Sciences, 2004, 99: 257-278.

[25]

Nichols G T, Berry R F, Green D H. Internally Consistent Gahnitic Spinel-Cordierite-Garnet Equilibria in the Fmashzn System: Geothermobarometry and Applications. Contributions to Mineralogy and Petrology, 1992, 111: 362-377.

[26]

Pattison D, Chacko T, Farquhar J, . Temperatures of Granulite-Facies Metamorphism: Constraints from Experimental Phase Equilibria and Thermobarometry Corrected for Retrograde Exchange. Journal of Petrology, 2003, 44: 867-900.

[27]

Perchuk L, Gerya T, Nozhkin A. Petrology and Retrograde P-T Path in Granulites of the Kanskaya Formation, Yenisey Range, Eastern Siberia. Journal of Metamorphic Geology, 1989, 7: 599-617.

[28]

Powell R, Sandiford M. Sapphirine and Spinel Phase Relationships in the System FeO-MgO-Al2O3-SiO2-TiO2-O2 in the Presence of Quartz and Hypersthene. Contributions to Mineralogy and Petrology, 1988, 98: 64-71.

[29]

Sandiford M. The Metamorphic Evolution of Granulites at Fyfe Hills: Implications for Archaean Crustal Thickness in Enderby Land, Antarctica. Journal of Metamorphic Geology, 1985, 3: 155-178.

[30]

Santosh M, Wada H. Microscale Isotopic Zonation in Graphite Crystals: Evidence for Channeled CO2 Influx in Granulites. Earth Planet Science Letter, 1993, 119: 19-26.

[31]

Santosh M, Sajeev K, Li J H. Extreme Crustal Metamorphism during Columbia Supercontinent Assembly: Evidence from North China Craton. Gondwana Research, 2006, 10(3–4): 256-266.

[32]

Sarkar S, Dasgupta S, Fukuoka M. Petrological Evolution of a Suite of Spinel Granulites from Vizianagram, Eastern Ghats Belt, India, and Genesis of Sapphirine-Bearing Assemblages. Journal of Metamorphic Geology, 2003, 21: 899-913.

[33]

Sato K, Santosh M, Tsunogae T. A Petrologic and Laser Raman Spectroscopic Study of Sapphirine-Spinel-Quartz-Mg-Staurolite Inclusions in Garnet from Kumiloothu, Southern India: Implications for Extreme Metamorphism in a Collisional Orogeny. Journal of Geodynamics, 2009, 47: 107-118.

[34]

Schumacher J. Nigerite “Lamellae” in Zn-Rich Spinel from the Falun Mine, Falun, Sweden. Terra Cognita, 1985, 5 227.

[35]

Sengör A, Natal’in B, Burtman V. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 1993, 364: 299-307.

[36]

Sengupta P, Sen J, Dasgupta S, . Ultrahigh Temperature Metamorphism of Metapelitic Granulites from Kondapalle, Eastern Ghats Belt: Implications for the Indo-Antarctic Correlation. Journal of Petrology, 1999, 40: 1065-1087.

[37]

Shimizu H, Tsunogae T, Santosh M. Spinel+Quartz Assemblage in Granulites from the Achankovil Shear Zone, Southern India: Implications for Ultrahigh-Temperature Metamorphism. Journal of Asian Earth Sciences, 2009, 36: 209-222.

[38]

Spry P, Scott S. Zincian Spinel and Staurolite as Guides to Ore in the Appalachians and Scandinavian Caledonides. Canadian Mineralogist, 1986, 24: 147-163.

[39]

Stoddard E. Zinc-Rich Hercynite in High-Grade Metamorphic Rocks: A Product of the Dehydration of Staurolite. American Mineralogist, 1979, 64: 736-741.

[40]

Tsunogae T, van Reenen D. Corundum Plus Quartz and Mg-Staurolite Bearing Granulite from the Limpopo Belt, Southern Africa: Implications for a P-T Path. Lithos, 2006, 92: 576-587.

[41]

Tuccillo M, Metzger K, Essene E, . Thermobarometry, Geochronology and the Interpretation of P-T-t Data in the Britt Domain, Ontario Grenville Orogen, Canada. Journal of Petrology, 1992, 33: 1225-1259.

[42]

Waters D. Hercynite-Quartz Granulites: Phase Relations, and Implications for Crustal Processes. European Journal of Mineralogy, 1991, 3: 367-386.

[43]

Wilde S, Helen L, Dorsett B, . Geological Setting and Controls on the Development of Graphite, Sillimanite and Phosphate Mineralization within the Jiamusi Massif: An Exotic Fragment of Gondwanaland Located in North-Eastern China?. Gondwana Research, 1999, 2: 21-46.

[44]

Wilde S, Wu F. Timing of Granite Emplacement in the Central Asian Orogenic Belt of Northeastern China. Gondwana Research, 2001, 4: 823-824.

[45]

Wilde S, Wu F, Zhang X. Late Pan-African Magmatism in Northeastern China: SHRIMP U-Pb Zircon Evidence from Granitoids in the Jiamusi Massif. Precambrian Research, 2003, 122: 311-327.

[46]

Wilde S, Zhang X, Wu F. Extension of a Newly Identified 500 Ma Metamorphic Terrane in North East China: Further U-Pb SHRIMP Dating of the Mashan Complex, Heilongjiang Province, China. Tectonophysics, 2000, 328: 115-130.

[47]

Wu F, Yang J, Lo C, . The Heilongjiang Group: A Jurassic Accretionary Complex in the Jiamusi Massif at the Western Pacific Margin of Northeastern China. Island Arc, 2007, 16: 156-172.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/