Monitoring and modeling the effects of groundwater flow on arsenic transport in Datong Basin

Qian Yu , Yanxin Wang , Rui Ma , Chunli Su , Ya Wu , Junxia Li

Journal of Earth Science ›› 2014, Vol. 25 ›› Issue (2) : 386 -396.

PDF
Journal of Earth Science ›› 2014, Vol. 25 ›› Issue (2) : 386 -396. DOI: 10.1007/s12583-014-0421-y
Article

Monitoring and modeling the effects of groundwater flow on arsenic transport in Datong Basin

Author information +
History +
PDF

Abstract

Although arsenic-contaminated groundwater in the Datong Basin has been studied for more than 10 years, little has been known about the complex patterns of solute transport in the aquifer systems. Field monitoring and transient 3D unsaturated groundwater flow modeling studies were carried out on the riparian zone of the Sanggan River at the Datong Basin, northern China, to better understand the effects of groundwater flow on As mobilization and transport. The results indicate that irrigation is the primary factor in determining the groundwater flow paths. Irrigation can not only increase groundwater level and reduce horizontal groundwater velocity and thereby accelerate vertical and horizontal groundwater exchange among sand, silt and clay formations, but also change the HS concentration, redox conditions of the shallow groundwater. Results of net groundwater flux estimation suggest that vertical infiltration is likely the primary control of As transport in the vadose zone, while horizontal water exchange is dominant in controlling As migration within the sand aquifers. Recharge water, including irrigation return water and flushed saltwater, travels downward from the ground surface to the aquifer and then nearly horizontally across the sand aquifer. The maximum value of As enriched in the riparian zone is roughly estimated to be 1 706.2 mg·d−1 for a horizontal water exchange of 8.98 m3·d−1 close to the river and an As concentration of 190 μg·L−1

Keywords

arsenic / groundwater flow model / Datong Basin

Cite this article

Download citation ▾
Qian Yu, Yanxin Wang, Rui Ma, Chunli Su, Ya Wu, Junxia Li. Monitoring and modeling the effects of groundwater flow on arsenic transport in Datong Basin. Journal of Earth Science, 2014, 25(2): 386-396 DOI:10.1007/s12583-014-0421-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aziz Z, van Geen A, Stute M, . Impact of Local Recharge on Arsenic Concentrations in Shallow Aquifers Inferred from the Electromagnetic Conductivity of Soils in Araihazar, Bangladesh. Water Resources Research, 2008, 44 7 W07416

[2]

Benner S G, Polizzotto M L, Kocar B D, . Groundwater Flow in an Arsenic-Contaminated Aquifer, Mekong Delta, Cambodia. Applied Geochemistry, 2008, 23(11): 3072-3087.

[3]

Berg M, Stengel C, Trang P T K, . Magnitude of Arsenic Pollution in the Mekong and Red River Deltas-Cambodia and Vietnam. Science of the Total Environment, 2007, 372(2): 413-425.

[4]

BGSDPHE Kinniburgh D G, Smedley P L. Arsenic Contamination of Groundwater in Bangladesh. Final Report BGS Technical Report WC/00/19, 2001 Keyworth, U.K: British Geological Survey

[5]

Charlet L, Polya D A. Arsenic in Shallow, Reducing Groundwaters in Southern Aisa: An Environmental Health Disaster. Elements, 2006, 2(2): 91-96.

[6]

Dong S G, Tang Z H, Liu B W, . Numerical Simulation for the Groundwater in Datong Basin and Evaluation of the Optimization of Water Resources. Geotechnical Investigation & Surveying, 2008, 3: 30-35.

[7]

Duan M Y, Xie Z M, Wang Y X, . Microcosm Studies on Iron and Arsenic Mobilization from Aquifer Sediments under Different Conditions of Microbial Activity and Carbon Source. Environmental Geology, 2009, 57(5): 997-1003.

[8]

Guo H M, Wang Y X, Shpeizer G M, . Natural Occurrence of Arsenic in Shallow Groundwater, Shanyin, Datong Basin, China. Journal of Environmental Science and Health Part A-Toxic/Hazard Substances & Environmental Engineering, 2003, 38(11): 2565-2580.

[9]

Guo H M, Wang Y X. Hydrogeochemical Processes in Shallow Quaternary Aquifers from the Northern Part of the Datong Basin, China. Applied Geochemistry, 2004, 19(1): 19-27.

[10]

Guo H M, Zhang Y, Jia Y F, . Dynamic Behaviors of Water Levels and Arsenic Concentration in Shallow Groundwater from the Hetao Basin, Inner Mongolia. Journal of Geochemical Exploration, 2013, 135: 130-140.

[11]

Farooqi A, Masuda H, Kusakabe M, . Distribution of Highly Arsenic and Fluoride Contaminated Groundwater from East Punjab, Pakistan, and the Controlling Role of Anthropogenic Pollutes in the Natural Hydrological Cycle. Geochemical Journal, 2007, 41(4): 213-234.

[12]

Fetter C W. Applied Hydrogeology, 2001 New Jersey: Prentice-Hall, 75-85.

[13]

Han S, Zhang F, Zhang H, . Spatial and Temporal Patterns of Groundwater Arsenic in Shallow and Deep Groundwater of Yinchuan Plain, China. Journal of Geochemical Exploration, 2013, 135: 71-78.

[14]

Harvey C E, Ashfaque K N, Yu W, . Groundwater Dynamics and Arsenic Contamination in Bangladesh. Chemical Geology, 2006, 228(1): 112-136.

[15]

Horneman A, van Geen A, Kent D V, . Arsnenic Mobilization in Bangladesh Groundwater Decoupled from Dissolution of Iron Oxyhydroxides, Part 1: Evidence from Borehole Cuttings. Geochimica et Cosmochima Acta, 2004, 68: 3459-3473.

[16]

Islam F S, Gault A G, Boothman C, . Role of Metal-Reducing Bacteria in Arsenic Release from Bengal Delta Sediments. Nature, 2004, 430(6995): 68-71.

[17]

Kirk M F, Holm T R, Park J, . Bacterial Sulfate Reduction Limits Natural Arsenic Contamination in Groundwater. Geology, 2004, 32(1): 953-956.

[18]

Kinniburgh D G, Smedley P L. Kinniburgh D G, Smedley P L. Arsenic Contamination of Groundwater in Bangladesh. Final Report BGS Technical Report WC/00/19, 2001 Keyworth, U.K: British Geological Survey

[19]

Klump S, Kipfer R, Cirpka O A, . Groundwater Dynamics and Arsenic Mobilization in Bangladesh Assessed Using Noble Gases and Tritium. Environmental Science & Technology, 2006, 40(1): 243-250.

[20]

Konikow L F, Neuzil C E. A Method to Estimate Groundwater Depletion from Confining Layers. Water Resources Research, 2007, 43 7 W07417

[21]

Li J, Wang Z H, Cheng X T, . Investigation of the Epidemiology of Endemic Arsenism in Ying County of Shanxi Province and the Content Relationship between Water Fluoride and Water Arsenic in Aquatic Environment. Chinese Journal of Endemiology, 2005, 24(2): 183-185.

[22]

Lowers H A, Breit G N, Foster A L, . Arsenic Incorporation into Authigenic Pyrite, Bengal Basin Sediment, Bangladesh. Geochemica et Cosmochimica Acta, 2007, 71(11): 2699-2717.

[23]

Mandal B K, Chowdhury T R, Samanta G, . Arsenic in Groundwater in Seven Districts of West Bengal, India: the Biggest Arsenic Calamity in the World. Current Science, 1996, 70(11): 976-986.

[24]

Masuda H, Mitamura M, Farooqi A M, . Geologic Structure and Geochemical Characteristics of Sediment of Fluoride and Arsenic Contaminated Groundwater Aquifer in Kalalanwala and Its Vicinity, Punjab, Pakistan. Geochemical Journal, 2010, 44(6): 489-505.

[25]

McArthur J M, Banerjee D M, Hudson-Edwards K A, . Natural Organic Matter in Sedimentary Basins and Its Relation to Arsenic in Anoxic Ground Water: The Example of West Bengal and Its Worldwide Implications. Applied Geochemistry, 2004, 19(8): 1255-1293.

[26]

McDonald M G, Harbaugh A W. A Modular Three-Dimensional Finite-Difference Groundwater Flow Model. USGS, Techniques of Water-Resources Investigations, 1988, 34 586.

[27]

Nakaya S, Natsume H, Masuda H, . Effect of Groundwater Flow on Forming Arsenic Contaminated Groundwater in Sonargaon, Bangladesh. Journal of Hydrology, 2011, 409(3–4): 724-736.

[28]

Nickson R T, McArthur J M, Burgess W G, . Arsenic Poisoning of Bangladesh Groundwater. Nature, 1998, 395(6700): 338-338.

[29]

Nickson R T, McArthur J M, Ravenscroft P, . Mechanism of Arsenic Release to Groundwater, Bangladesh and West Bengal. Applied Geochemistry, 2000, 15(4): 403-413.

[30]

Pei H H, Liang S X, Ning L Y. A Discussion of the Enrichment and Formation of Arsenic in Groundwater in Datong Basin. Hydrogeology & Engineering Geology, 2005, 32(4): 65-69.

[31]

Peters S C, Blum J D. The Source and Transport of Arsenic in a Bedrock Aquifer, New Hampshire, USA. Applied Geochemistry, 2003, 18(11): 1773-1787.

[32]

Postma D, Larsen F, Hue N T M, . Arsenic in Groundwater of the Red River Flood Plain, Vietnam: Controlling Geochemical Processes and Reactive Transport Modeling. Geochemica et Cosmochimica Acta, 2007, 71(21): 5054-5071.

[33]

Schreiber M E, Simo J A, Freiberg P G. Stratigraphic and Geochemical Controls on Naturally Occurring Arsenic in Groundwater, Eastern Wisconsin, USA. Hydrogeology Journal, 2000, 8(2): 161-176.

[34]

Smedley P L, Kinniburgh D G. A Review of the Source, Behavior and Distribution of Arsenic in Natural Waters. Applied Geochemistry, 2002, 17(5): 517-568.

[35]

Smedley P L, Zhang M, Zhang G, . Mobilisation of Arsenic and Other Trace Elements in Fluviolacustrine Aquifers of the Huhhot Basin, Inner Mongolia. Applied Geochemistry, 2003, 18(9): 1453-1477.

[36]

Smith A H, Lingas E Q, Rahamn M. Contamination of Drinking-Water by Arsenic in Bangladesh: A Public Health Emergency. Bull. of the World Health Organization, 2000, 78(9): 1093-1103.

[37]

Stigter T Y, Carvalho Dill A M M, Ribeiro L, . Impact of the Shift from Groundwater to Surface Water Irrigation on Aquifer Dynamics and Hydrochemistry in A Semi-Arid Region in the South of Portugal. Agricultural Water Management, 2006, 85(1–2): 121-132.

[38]

Water Resources Research, 2007, 43 9

[39]

Thangarajan M, Linn F, Uhl V, . Modeling An Inland Delta Aquifer System to Evolve Pre-Development Management Schemes: A Case Study Upper Thamalakane River Valley, Botswana, Southern Africa. Environmental Geology, 1999, 38(4): 285-295.

[40]

ven Geen A, Zheng Y, Stute M, . Comments on “Arsenic Mobility and Groundwater Extraction in Bangladesh” (II). Science, 2003, 300(5619): 584c-584c.

[41]

Wang Y X, Shpeyzer G. Hydrogeochemistry of Mineral Waters from Rrift Systems on the East Asia Continent: Case Studies in Shanxi and Baikal, 2000 Beijing: China Enviromental Science Press

[42]

Wang Y X, Shavartsev S L, Su C L. Genesis of Arsenic/Fluoride-Enriched Soda Water: A Case Study at Datong, Northern China. Applied Geochemistry, 2009, 24(4): 641-649.

[43]

Xie X J, Wang Y X, Su C L, . Arsenic Mobilization in Shallow Aquifers of Datong Basin: Hydrochemical and Mineralogical Evidences. Journal of Geochemical Exploration, 2008, 98(3): 107-115.

[44]

Xie X J, Ellis A, Wang Y X, . Geochemsitry of Redox-Sensitive Elements and Sulfur Isotopes in the Haigh Arsenic Groundwater System of Datong Basin, China. Science of the Total Environment, 2009, 407(12): 3823-3835.

[45]

Xie X J, Wang Y X, Li J X, . Occurrence of High Arsenic Groundwater at the Datong and Huhhot Basin, Northern China: Hydrochemical and Isotopic Investigation. Fresenius Environmental Bulletin, 2012, 21(4): 819-829.

[46]

Xie X J, Wang Y X, Su C L, . Influence of Irrigation Practices on Arsenic Mobilization: Evidence from Isotope Composition and Cl/Br Ratios in Groundwater from Datong Basin, Northern China. Journal of Hydrology, 2012, 424: 37-47.

[47]

Yu G Q, Sun D J, Zheng Y. Health Effects of Exposure to Natural Arsenic in Groundwater and Coal in China: An Overview of Occurrence. Environmental Health Perspectives, 2007, 115(4): 636-642.

[48]

Zhang J G, Zhao H J. Water Resource Management in Shanxi Province. Ground Water, 1987, 4: 232-234.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/