Petrology, geochemistry and geochronology of gabbros from the Zhongcang ophiolitic mélange, central Tibet: Implications for an intra-oceanic subduction zone within the Neo-Tethys Ocean

Mengjing Xu, Cai Li, Wei Xu, Chaoming Xie, Peiyuan Hu, Ming Wang

Journal of Earth Science ›› 2014, Vol. 25 ›› Issue (2) : 224-240.

Journal of Earth Science ›› 2014, Vol. 25 ›› Issue (2) : 224-240. DOI: 10.1007/s12583-014-0419-5
Article

Petrology, geochemistry and geochronology of gabbros from the Zhongcang ophiolitic mélange, central Tibet: Implications for an intra-oceanic subduction zone within the Neo-Tethys Ocean

Author information +
History +

Abstract

In order to investigate the evolution of Shiquanhe-Yongzhu-Jiali ophiolitic mélange belt, the gabbros from new discovered Zhongcang ophiolitic mélange are studied through petrology, whole-rock geochemistry, zircon U-Pb dating and Lu-Hf isotope. The gabbros investigated in this paper contain cumulate gabbro and gabbro dike, and they have undergone greenschist-amphibolite facies metamorphism. The chondrite normalized rare earth element (REE) patterns of most of these rocks show flat types with slightly light REE (LREE) depletion and the N-MORB normalized incompatible elements diagrams indicate depletion in high field strength elements (HFSE) (Nb, Ta) and enrichment in large ion lithophile elements (LILE). These gabbros have island arc and mid-ocean ridge basalt affinities, suggesting that they were originated in an oceanic back arc basin. Whole rock geochemistry and high positive ɛ Nd(t) values show that these gabbros were derived from ∼30% partial melting of a spinel lherzolite mantle, which was enriched by interaction with slab-derived fluids and melts from sediment. U-Pb analyses of zircons from cumulate gabbro yield a weighted mean age of 114.3±1.4 Ma. Based on our data and previous studies, we propose that an intra-oceanic subduction system and back arc basin operated in the Neo-Tethy Ocean of central Tibet during Middle Jurassic and Early Cretaceous, resembling modern active intra-oceanic subduction systems in the western Pacific.

Keywords

Tibet / Zhongcang ophiolitic mélange / gabbro / Shiquanhe-Yongzhu-Jiali ophiolitic mélange belt / geochemistry

Cite this article

Download citation ▾
Mengjing Xu, Cai Li, Wei Xu, Chaoming Xie, Peiyuan Hu, Ming Wang. Petrology, geochemistry and geochronology of gabbros from the Zhongcang ophiolitic mélange, central Tibet: Implications for an intra-oceanic subduction zone within the Neo-Tethys Ocean. Journal of Earth Science, 2014, 25(2): 224‒240 https://doi.org/10.1007/s12583-014-0419-5

References

Aitchison J C, Davis A M. The Nature and Age of Oceanic Rocks along the Bangong-Nujiang Suture Zone in Central Tibet. Journal of Asian Earth Sciences, 2006, 26 123.
Aldanmaz E, Pearce J A, Thirlwall M F, . Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 2000, 102: 67-95.
CrossRef Google scholar
Andersen T. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 2002, 192: 59-79.
CrossRef Google scholar
Blichert-Toft J, Albarède F. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 1997, 148: 243-258.
CrossRef Google scholar
Cabanis B, Lecolle M. The La/10-Y/15-Nb/8 Diagram: A Tool for Discrimination Volcanic Series and Evidencing Continental Crust Magmatic Mixtures and/or Contamination. Compte Rendus de l’Academie des Sciences, Seris II, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la Terre, 1989, 309(20): 2023-2029.
Chen Y L, Zhang K Z, Gou Y D, . 1: 250 000 Geological Report of Wuma, 2006
Coward M P, Kidd W S F, Yun P, . The Structure of the 1985 Tibet Geotraverse, Lhasa to Golmud. Philosophical Transactions of the Royal Society of London, Series A, 1988, 327: 307-336.
CrossRef Google scholar
Davidson J P. Crustal Contamination versus Subduction Zone Enrichment: Examples from the Lesser Antilles and Implications for Mantle Source Compositions of Island Arc Volcanic Rocks. Geochimica et Cosmochimica Acta, 1987, 51: 2185-2198.
CrossRef Google scholar
Dewey J F, Shackleton R M, Chengfa C, . The Tectonic Evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London Series A, 1988, 327: 379-413.
CrossRef Google scholar
Dilek Y, Furnes H, Shallo M. Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ Evolution of a Marginal Basin Oceanic Crust. Lithos, 2008, 100: 174-209.
CrossRef Google scholar
Donnelly K E, Goldstein S L, Langmuir C H, . Origin of Enriched Ocean Ridge Basalts and Implications for Mantle Dynamics. Earth and Planetary Science Letters, 2004, 226: 347-366.
CrossRef Google scholar
Fan S Q, Shi R D, Ding L, . Geochemical Characteristics and Zircon U-Pb Age of the Plagiogranite in Gaize Ophiolite of Central Tibet and Their Tectonic Significance. Acta Petrologica et Mineralogica, 2010, 29(5): 467-478.
Ferry J M, Watson E B. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 2007, 154: 429-437.
CrossRef Google scholar
Geng Q R, Pan G T, Wang L Q, . Tethyan Evolution and Metallogenic Geological Background of the Bangong Co-Nujiang Belt and the Qiangtang Massif in Tibet. Geological Bulletin of China, 2011, 30: 1261-1274.
Ghazi J M, Moazzen M, Rahgoshay M, . Geochemical Characteristics of Basaltic Rocks from the Nain Ophiolite (Central Iran): Constraints on Mantle Wedge Source Evolution in an Oceanic Back Arc Basin and a Geodynamical Model. Tectonophysics, 2012, 574-575: 92-104.
CrossRef Google scholar
Girardeau J, Marcoux J, Allegre C J, . Tectonic Environment and Geodynamic Significance of the Neo-Cimmerian Donqiao Ophiolite, Bangong-Nujiang Suture Zone, Tibet. Nature, 1984, 307: 27-31.
CrossRef Google scholar
Girardeau J, Marcoux J, Fourcade E, . Xainxa Ultramafic Rocks, Central Tibet, China: Tectonic Environment and Geodynamic Significance. Geology, 1985, 13: 330-333.
CrossRef Google scholar
Gribble R F, Stern R J, Bloomer S H, . MORB Mantle and Subduction Components Interact to Generate Basalts In the Southern Mariana Trough Backarc Basin. Geochimica et Cosmochimica Acta, 1996, 60(12): 2153-2166.
CrossRef Google scholar
Griffin W L, Pearson N J, Belousova E, . The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147.
CrossRef Google scholar
Grimes C, John B, Cheadle M, . On the Occurrence, Trace Element Geochemistry, and Crystallization History of Zircon from In Situ Ocean Lithosphere. Contributions to Mineralogy and Petrology, 2009, 158: 757-783.
CrossRef Google scholar
He Z H, Yang D M, Wang T W. Age, Geochemistry and Its Tectonic Significance of Kaimeng Ophiolites in Jiali Fault Belt, Tibet. Acta Petrologica Sinica, 2006, 22: 653-660.
Hoskin P W O, Schaltegger U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62.
CrossRef Google scholar
Hu C. Characteristicsof Shiquanhe-Guchang Ophiolite Belt and Its Geologic Significance. Journal of Chengdu College of Geology, 1990, 17: 23-30.
Hu Z, Liu Y, Gao S, . Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen By Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 2012, 27: 1391-1399.
CrossRef Google scholar
Kakar M I, Mahmood K, Khan M, . Petrology and Geochemistry of Gabbros from the Muslim Bagh Ophiolite: Implications for Their Petrogenesis and Tectonic Setting. Journal of Himalayan Earth Sciences, 2013, 46(1): 19-30.
Kapp P, Murphy M A, Yin A, . Mesozoic and Cenozoic Tectonic Evolution of the Shiquanhe Area of Western Tibet. Tectonics, 2003, 22 4 1029.
Li C. The Longmucuo-Shuanghu-Langcangjiang Plate Suture and the North Boundary of Distribution of Gondwana Facies Permo-Carboniferous System in Northern Xizang, China. Journal of Changchun College of Geology, 1987, 17(2): 155-166.
Li C, Zhai Q G, Dong Y S, . High-Pressure Eclogite-Blueschist Metamorphic Belt and Closure of Paleo-Tethys Ocean in Central Qiangtang, Qinghai-Tibet Plateau. Journal of Earth Science, 2009, 20(2): 209-218.
CrossRef Google scholar
Liu D Z, Tao X F, Ma R Z, . 1: 250 000 Geological Report of Cuoqin County, 2003
Liu Y, Wang X, Wang D, . Triassic High-Mg Adakitic Andesites from Linxi, Inner Mongolia: Insights into the Fate of the Paleo-Asian Ocean Crust and Fossil Slab-Derived Melt-Peridotite Interaction. Chemical Geology, 2012, 328: 89-108.
CrossRef Google scholar
Ludwig K R. ISOPLOT/Ex, Version 2.2, a Geochronological Toolkit for Microsoft Excel, 2000 Berkeley.: Berkeley Geochronological Center Special Publication, 1-71.
Mattern F, Schneider W. Suturing of the Proto- and Paleo-Tethys Oceans in the Western Kunlun (Xinjiang, China). Journal of Asian Earth Sciences, 2000, 18: 637-650.
CrossRef Google scholar
McKenzie D, O’nions R K. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 1991, 32: 1021-1091.
CrossRef Google scholar
Miyashiro A. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 1974, 274: 321-355.
CrossRef Google scholar
Mo X X, Dong G C, Zhao Z D, . Mantle Input to the Crust in Southern Gangdese, Tibet, during the Cenozoic: Zircon Hf Isotopic Evidence. Journal of Earth Science, 2009, 20(2): 241-249.
CrossRef Google scholar
Pan G T, Ding J, Yao D S, . Guidebook of 1:1 500 000 Geologic Map of the Qinghai-Xizang (Tibet) Plateau and Adjacent Areas, 2004 Chengdu: Cartographic Publishing House
Pan G T, Mo X X, Hou Z Q, . Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 2006, 22 3 521.
Pan G T, Wang L Q, Li R S, . Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 2012, 53: 3-14.
CrossRef Google scholar
Pearce J A. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 2008, 100(1–4): 14-48.
CrossRef Google scholar
Pearce J A, Parkinson I J. Trace Element Models for Mantle Melting: Application to Volcanic Arc Petrogenesis. Geological Society, London, Special Publications, 1993, 76: 373-403.
CrossRef Google scholar
Pearce J A, Peate D W. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 1995, 23: 251-285.
CrossRef Google scholar
Pearce J A, Stern R J, . Christie D M, Fisher C R, Lee S M, . Origin of Backarc Basin Magmas: Trace Element and Isotope Perspectives. Backarc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions, Geophysical Monograph Series, 2006 Washington, D. C.: American Geophysical Union, 63-86.
CrossRef Google scholar
Qiu R Z, Deng J F, Zhou S, . Ophiolite Types in Western Qinghai-Tibetan Plateau-Evidences from Petrology and Geochemistry. Earth Science Frontiers, 2005, 12: 277-291.
Qiu R Z, Zhou S, Deng J F, . Dating of Gabbro in the Shemalagou Ophiolite in the Western Segment of the BangongCo-Nujiang Ophiolite Belt, Tibet—With a Discussion of the Age of the Bangong Co-Nujiang Ophiolite Belt. Geology in China, 2004, 31(3): 262-268.
Qu Y G, Wang Y S, Duan J X, . 1: 250 000 Geological Report of Duoba Area, 2011 Wuhan: China Unisversity of Geoscience Press
Ray D, Misra S, Banerjee R, . Geochemical Implications of Gabbro from the Slow-Spreading Northern Central Indian Ocean Ridge, Indian Ocean. Geological Magazine, 2011, 148(3): 404-422.
CrossRef Google scholar
Renna M, Tribuzio R. Petrology, Geochemistry and U-Pb Zircon Geochronology of Lower Crust Pyroxenites from Northern Apennine (Italy): Insights into the Post-Collisional Variscan Evolution. Contributions to Mineralogy and Petrology, 2009, 157: 813-835.
CrossRef Google scholar
Rudnick R L, Gao S. Heinrich D H, Karl K T. Composition of the Continental Crust. Treatise on Geochemistry, 2003 Oxford: Pergamon, 1-64.
CrossRef Google scholar
Shervais J W. Ti-V plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 1982, 59: 101-118.
CrossRef Google scholar
Shi R D. SHRIMP Dating of the Bangong Lake SSZ-Type Ophiolite: Constraints on the Closure Time of the Ocean in the Bangong Lake-Nujiang River, Northwestern Tibet. Chinese Science Bulletin, 2007, 52(7): 936-941.
CrossRef Google scholar
Shinjo R, Chung S L, Kato Y, . Geochemical and Sr-Nd Isotopic Characteristics of Volcanic Rocks from the Okinawa Trough and Ryukyu Arc: Implications for the Evolution of a Young, Intracontinental Backarc Basin. Journal of Geophysical Research: Solid Earth, 1999, 104(B5): 10591-10608.
CrossRef Google scholar
Savov I, Ryan J, Haydoutov I, . Late Precambrian Balkan-Carpathian Ophiolite—A Slice of the Pan-African Ocean Crust? Geochemical and Tectonic Insights from the Tcherni Vrah and Deli Jovan Massifs, Bulgaria and Serbia. Journal of Volcanology and Geothermal Research, 2001, 110: 299-318.
CrossRef Google scholar
Scoates J S. The Plagioclase Magma Density Paradox Rre-Examined and the Crystallization of Proterozoic Anorthosites. Journal of Petrology, 2000, 41(5): 627-649.
CrossRef Google scholar
Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42: 313-345.
CrossRef Google scholar
Tang L F, Huang J C, Luo X C, . The Discovery and Significance of the Asuo Structural Mélanges in North Tibet. Journal of East China Institute of Technology, 2004, 27: 245-250.
Tibet Exploration and Development Bureau of Geology and Mineral Resources (TEDBGMR), 1995. 1: 200 000 Geological Report of Bomi. Unpublished (in Chinese)
Volpe A M, Macdougall J D, Hawkins J W. Mariana Trough basalts (MTB): Trace Element and Sr-Nd Isotopic Evidence for Mixing between MORB-Like and Arc-Like Melts. Earth and Planetary Science Letters, 1987, 82: 241-254.
CrossRef Google scholar
Wang B D, Xu J F, Zeng Q G, . Geochemistry and Genesis of Lhaguo Tso Ophiolite in South of Gerze Area, Center Tibet. Acta Petrologica Sinica, 2007, 23: 1521-1530.
Wang W L, Aitchison J C, Lo C H, . Geochemistry and Geochronology of the Amphibolite Blocks in Ophiolitic Mélanges along Bangong-Nujiang Suture, Central Tibet. Journal of Asian Earth Sciences, 2008, 33: 122-138.
CrossRef Google scholar
Wang Y S, Qu Y G, P, . The Geologic Features of Ophiolite Zone in the Yongzhu Area, Tibet. Jilin Geology, 2003, 22(2): 1-14.
Winchester J A, Floyd P A. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 1977, 20: 325-343.
CrossRef Google scholar
Xie G G, Zhou A J, Yuan J Y, . 1: 250 000 Geological Report of Bangduo Area, 2002
Xu R K, Ci Q, Pang Z J, . 1: 250 000 Geological Report of Sinuowushan and Shiquanhe, 2004
Xu Y G, Menzies M A, Thirlwall M F, . Exotic Lithosphere Mantle beneath the Western Yangtze Craton: Petrogenetic Links to Tibet Using Highly Magnesian Ultrapotassic Rocks. Geology, 2001, 29(9): 863-866.
CrossRef Google scholar
Yang R H, Li C, Chi X G, . The Primiary Study of Geochemical Characteristics and Tectonic Setting of Ophiolite in Yongzhu-Hamuhu, Tibet. Geoscience, 2003, 17(1): 14-19.
Ye P S, Wu H Z, Hu D G, . Geochemical Characteristics of Ophiolites in Yongzhu-Guomangcuo, Tibet and Its Tectonic Significance. Geoscience, 2005, 19(4): 508-514.
Ye P S, Wu Z H, Hu D G, . Geochemistry and Tectonic Setting of Ophiolite in West of Namco Lake, Tibet. Geoscience, 2004, 18(2): 237-248.
Yin A, Harrison T M. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280.
CrossRef Google scholar
Yu H. Mineral Geochemical Charateristics and Genetic Mechanism of Olivine Rocks in Shangnan, 2011 Beijing: China University of Geosciences (Beijing)
Zeng Q G, Mao G Z, Wang B D, . 1: 250 000 Geological Report of Gaize with Geological Map, 2006
Zeng Q G, Mao G Z, Wang B D, . 1: 250 000 Geological Report of Riganpeico, 2011 Wuhan: China University of Geoscience Press
Zhang Y X. Tectonic Evolution of the Middle-Western Bangong-Nujiang Suture, Tibet: [Dissertation], 2007 Beijing: Graduate School of the Chinese Aeademy of Seiences
Zhang Y X, Zhang K, Li B, . Zircon SHRIMP U-Pb Geochronology and Petrogenesis of the Plagiogranites from the Lagkor Lake Ophiolite, Gerze, Tibet, China. Chinese Science Bulletin, 2007, 52: 651-659.
CrossRef Google scholar
Zhao J H, Zhou M F. Geochemistry of Neoproterozoic Mafic Intrusions in the Panzhihua District (Sichuan Province, SW China): Implications for Subduction-Related Metasomatism in the Upper Mantle. Precambrian Research, 2007, 152: 27-47.
CrossRef Google scholar
Zheng L L, Geng Q R, Dong H, . The Discovery and Siginigicance of the Relicts of Ophiolitic Mélanges along the Parlung Zangbo in the Bomi Region, Eastern Xizang. Sedimentary Geology and Tethyan Geology, 2003, 23: 27-30.
Zheng Y Y, Xu R K, He L X, . The Shiquan River Ophiolitic Mélange Zone in Xizang: the Delineation and Significance of a New Archipelagic Arc-Basin System. Sedimentary Geology and Tethyan Geology, 2004, 24: 13-20.
Zheng Y Y, Xu R K, Ma G T, . Ages of Generation and Subduction of Shiquan River Ophiolite: Restriction from SHRIMP Zircon Dating. Acta Geologica Sinica, 2006, 22(4): 895-904.
Zhu D C, Zhao Z D, Niu Y, . The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 2011, 301: 241-255.
CrossRef Google scholar
Zhu D C, Pan G T, Wang L Q, . Spatial-Temporal Distributionand Tectonic Setting of Jurassic Magmatism in the Gangdise Belt, Tibet, China. Geological Bulletin of China, 2008, 27(4): 458-468.
Zhu Z. The Geochemical Characteristics and Tectonic Setting about Ophiolite in Yongzhu-Namucuo, Tibet Plateau, 2004 Changchun: Jilin University

Accesses

Citations

Detail

Sections
Recommended

/