Understanding Miocene climate evolution in Northeastern Tibet: Stable carbon and oxygen isotope records from the Western Tianshui Basin, China

Zhanfang Hou , Jijun Li , Chunhui Song , Jun Zhang , Zhengchuang Hui , Shiyue Chen , Feng Xian

Journal of Earth Science ›› 2014, Vol. 25 ›› Issue (2) : 357 -365.

PDF
Journal of Earth Science ›› 2014, Vol. 25 ›› Issue (2) : 357 -365. DOI: 10.1007/s12583-014-0416-8
Article

Understanding Miocene climate evolution in Northeastern Tibet: Stable carbon and oxygen isotope records from the Western Tianshui Basin, China

Author information +
History +
PDF

Abstract

To investigate climate evolution during the Miocene, especially during the Middle Miocene climate transition on the northeastern Tibetan Plateau, stable oxygen and carbon isotopes of carbonates from a 288-m-thick lacustrine-fluvial sediment sequence covering the period from 17.1 to 6.1 Ma from Tianshui Basin, China, were analyzed. The relatively low stable oxygen isotope values indicate the prevalence of wet climate conditions during the period of 17.1–13.6 Ma, an interval corresponding to the well-known Middle Miocene Climate Optimum. The interval between 13.6 and 11.0 Ma (i.e., the late Middle Miocene) is marked by a progressive increase in the δ18O values, indicative of a decrease in precipitation, probably linked to the expansion of the East Antarctic Ice Sheet and global cooling since about 14 Ma. The climate in the study area continued to get drier as shown by the enrichment of the heavy oxygen isotope from 11 Ma. We attribute these stepwise climatic changes as revealed by our carbonate δ18O record from the northeastern Tibetan Plateau to the sustained global cooling that may have reduced moist transport to Central Asia, which in turn led to a permanent aridification.

Keywords

stable oxygen / carbon isotope / climate change / Miocene / Tianshui Basin

Cite this article

Download citation ▾
Zhanfang Hou, Jijun Li, Chunhui Song, Jun Zhang, Zhengchuang Hui, Shiyue Chen, Feng Xian. Understanding Miocene climate evolution in Northeastern Tibet: Stable carbon and oxygen isotope records from the Western Tianshui Basin, China. Journal of Earth Science, 2014, 25(2): 357-365 DOI:10.1007/s12583-014-0416-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alonso-Zarza A M, Zhao Z, Song C H, . Mud-Flat/Distal Fan and Shallow Lake Sedimentation (Upper Vallesian-Turolian) in the Tianshui Basin, Central China: Evidence Against the Late Miocene Eolian Loess. Sedimentary Geology, 2009, 22: 42-51.

[2]

An Z S, Kutzbach J E, Prell W L, . Evolution of Asian Monsoons and Phased Uplift of the Himalaya-Tibetan Plateau since Late Miocene Times. Nature, 2001, 411: 62-66.

[3]

Barron E J. Explanation of the Tertiary Global Cooling Trend. Palaeogeography, Palaeoclimatology, Palaeoecology, 1985, 50: 45-61.

[4]

Cheng X R, Zhao Q H, Wang J L, . Data Report: Stable Isotopes from Sites 1147 and 1148. Proceedings of the Ocean Drilling Program: Scientific Results, 2004, 184: 1-12.

[5]

Chung C H, Koh Y K. Palynostratigraphic and Palaeoclimatic Investigations on the Miocene Deposits in the Pohang Area, South Korea. Review of Palaeobotany and Palynology, 2005, 135: 1-11.

[6]

Clift P, Lee J I, Clark M K, . Erosional Response of South China to Arc Rifting and Monsoonal Strengthening: A Record from the South China Sea. Marine Geology, 2002, 184: 207-226.

[7]

Cyr A J, Currie B S, Rowley D B. Geochemical Evaluation of Fenghuoshan Group Lacustrine Carbonates, North-Central Tibet: Implications for the Paleoaltimetry of the Eocene Tibetan Plateau. The Journal of Geology, 2005, 113: 517-533.

[8]

Dettman D L, Kohn M J, Quade J, . Seasonal Stable Isotope Evidence for a Strong Asian Monsoon throughout the Past 10.7 m.y.. Geology, 2001, 29(1): 31-34.

[9]

Dettman D L, Fang X M, Garzione C N, . Uplift Driven Climate Change at 12 Ma: A Long δ18O Record from the NE Margin of the Tibetan Plateau. Earth and Planetary Science Letters, 2003, 214: 267-277.

[10]

Dutton J F, Barron E J. Miocene to Present Vegetation Changes: A Possible Piece of the Cenozoic Cooling Puzzle. Geology, 1997, 25(1): 39-41.

[11]

Fan M, Dettman D L, Song C H, . Climatic Variation in the Linxia Basin, NE Plateau, from 13.1 to 4.3 Ma: The Stable Isotope Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247: 313-328.

[12]

Fang X M, Garzione C, Voo R V D, . Flexural Subsidence by 29 Ma on the NE Edge of Tibet from the Magnetostratigraphy of Linxia Basin, China. Earth and Planetary Science Letters, 2003, 210: 545-560.

[13]

Flower B P. Middle Miocene Ocean-Climate Transition: High-Resolution Oxygen and Carbon Isotopic Records from Deep Sea Drilling Project Site 588A, Southwest Pacific. Paleoceanography, 1993, 8: 811-843.

[14]

Flower B P, Kennett J P. The Middle Miocene Climatic Transition: East Antarctic Ice Sheet Development, Deep Ocean Circulation and Global Carbon Cycling. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108: 537-555.

[15]

Goldsmith J R, Graf D L, Joensuu O I. The Occurrence of Magnesian Calcites in Nature. Geochimica et Cosmochimica Acta, 1955, 7: 212-230.

[16]

Goldsmith J R, Graf D L, Heard H C. Lattice Constants of the Calcium-Magnesium Carbonates. The American Minerilogist, 1961, 46: 453-457.

[17]

Guo Z T, Ruddiman W F, Hao Q Z, . Onset of Asian Desertication by 22 Myr Ago Inferred from Loess Deposits in China. Nature, 2002, 416: 159-163.

[18]

Guo Z T, Peng S Z, Hao Q Z. Late Miocene-Pleicene Development of Asian Aridication as Recorded in the Red-Earth Formation in Northern China. Global and Planetary Change, 2004, 41: 135-145.

[19]

Holbourn A, Kuhnt W, Schulz M, . Impacts of Orbital Forcing and Atmospheric Carbon Dioxide on Miocene Ice-Sheet Expansion. Nature, 2005, 438: 483-487.

[20]

Hough B G, Garzione C N, Wang Z, . Stable Isotope Evidence for Topographic Growth and Basin Segmentation: Implications for the Evolution of the NE Tibetan Plateau. Geological Society of America Bulletin, 2011, 123: 168-185.

[21]

Hui Z C, Li J J, Xu H, . Miocene Vegetation and Climatic Changes Reconstructed from a Sporopollen Record of the Tianshui Basin, NE Tibetan Plateau. Palaogeography, Palaeoclimatology, Palaeoecology, 2011, 308: 373-382.

[22]

Itoigawa J, Yamanoi T. Tsuchi R. Climatic Optimum in the Mid-Neogene of the Japanese Islands. Pacific Neogene Events, Their Timing, Nature and Inter-Relationship, 1990 Tokyo: University of Tokyo Press, 3-14.

[23]

Jiang H C, Ding Z L, Xiong S F. Magnetostratigraphy of the Neogene Sikouzi Section at Guyuan, Ningxia, China. Paleogeography, Palaeoclimatology, Palaeoecology, 2007, 243: 223-234.

[24]

Jiang H C, Ding Z L. A 20 Ma Pollen Record of East-Asian Summer Monsoon Evolution from Guyuan Ningxia, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 265: 30-38.

[25]

Jiang H C, Ji J L, Gao L, . Cooling-Driven Climate Change at 12-11 Ma: Multiproxy Recoords from a Long Fluviolacustrine Sequence at Guyuan, Ningxia, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 265: 148-158.

[26]

Jiang H C, Ding Z L. Eolian Grain-Size Signature of the Sikouzi Lacustrine Sediments (C-Hinese Loess Plateau): Implications for Neogene Evolution of the East Asian Winter Monsoon. Geological Society of America, 2010, 122: 843-854.

[27]

John C M, Karner G D, Mutti M. δ18O and Marion Plateau Backstripping: Combining Two Approaches to Constrain Late Middle Miocene Eustatic Amplitude. Geology, 2004, 32: 829-832.

[28]

Kent-Corson M, Ritts B, Zhuang G, . Stable Isotopic Constraints on the Tectonic, Topographic, and Climatic Evolution of the Northern Margin of the Tibetan Plateau. Earth Planetary Science Letters, 2009, 282: 158-166.

[29]

Kim S, O’Neil J R. Equilibrium and Nonequilibrium Oxygen Isotope Effects in Synthetic Carbonates. Geochimica et Cosmochimica Acta, 1997, 61: 3461-3475.

[30]

Lear C H, Elderfield H, Wilson P A. Cenozoic Deep-Sea Temperatures and Glocal Ice Volumes from Mg/Ca in Benthic Foraminiferal Calcite. Science, 2000, 287: 269-272.

[31]

Leng M J, Marshall J D. Palaeoclimate Interpretation of Stable Isotope Data from Lake Sediment Archives. Quaternary Science Reviews, 2004, 6(23): 811-831.

[32]

Li G J, Pettke T, Chen J. Increasing Nd isotopic Ratio of Asian Dust Indicates Progressive Uplift of the North Tibetan Plateau since the Middle Miocene. Geology, 2011, 39: 199-202.

[33]

Li G J, Chen J, Yang C. Primary and Secondary Carbonate in Chinese Loess Discriminated by Trace Element Composition. Geochimica et Cosmochimica Acta, 2013, 103: 26-35.

[34]

Li H C, Ku T L. δ13C-δ18C Covariance as a Paleohydrological Indicator for Closed Basin Lakes. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 133: 69-80.

[35]

Li J J, Zhang J, Song C H, . Miocene Bahean Stratigraphy in the Longzhong Basin, Northern Central China and Its Implicatiions in Environmental Change. Science in China Series D: Earth Sciences, 2006, 49: 1270-1279.

[36]

Li J J, Fang X M, Vander Voo R, . Late Cenozoic Magnetostratigraphy (11-0 Ma) of the Dongshanding and Wangjiashan Sections in the Longzhong Basin, Western China. Geologe & Mijnbouw, 1997, 76: 121-134.

[37]

Lu H, Wang X, Li L. Aeolian Sediment Evidence that Global Cooling has Driven Late Cenozoic Stepwise Aridification in Asia. Geological Society, London, Special Pubications, 2010, 342: 29-44.

[38]

Pascual R, Janreguizar E O. Evolving Climates and Mammal Faunas in Cenozic South America. Journal of Human Evolution, 1990, 19: 23-60.

[39]

Ma Y Z, Li J J, Fang X M, . Pollen Assemblage in 30.6–5.0 Ma Redbeds of Linxia Regionand Climate Evolution. Chinese Science Bulletin, 1998, 43: 301-304.

[40]

Miao Y F, Fang X M, Herrmann M, . Miocene Pollen Record of KC-1 Core in the Qaidam Basin, NE Tibetan Plateau and Implications for Evolution of the East Asian Monsoon. Palaeography, Palaeoclimatology, Palaeoecology, 2011, 299: 30-38.

[41]

Miller K G, Faribanks R G, Mountain G S. Tertiary Oxygen Isotope Synthesis, Sea Level History, and Continental Margin Erosion. Paleoceanography, 1987, 2: 1-19.

[42]

Miller K G, Wright J D, Fairbanks R G. Unlocking the Icehouse: Oligocene-Miocene Oxygen Isotopes, Eustasy and Margin Erosion. Journal of Geophysical Reseach, 1991, 96: 6829-6848.

[43]

Miller K G, Mountain G S The Leg 150 Shipboard Party, Members of the New Jersey Coastal Plain Drilling Project Drilling and Dating New Jersey Oligocene-Miocene Sequences: Ice Volume, Global Sea Level, and Exxon Records. Science, 1996, 271: 1092-1095.

[44]

Mudie P J, Helgason J. Palynological Evidence for Miocene Climatic Cooling in Eastern Iceland about 9. Myr Ago. Nature, 1983, 303: 689-692.

[45]

Ramsein G, Fluteau F, Besse J, . Effect of Orogeny: Plate Motion and Land-Sea Distribution on Eurasian Climate Change over the Past 30 Million Years. Nature, 1997, 386: 788-795.

[46]

Retallack G J. Middle Miocene Fossil Plants from Fort Ternan (Kenya) and Evolution of African Grasslands. Paleobiology, 1992, 18: 383-400.

[47]

Robert C, Sterin R, Acquaviva R. Cenozoic Evolution and Significance of Clay Associations in the New Zealand Region of the Southwest Pacific, Leg 90. Init. Rep. DSDP Washington D. C., 1986, 90: 1225-1238.

[48]

Rozankski K, Araguas-Araguas L, Gonfiantini R, . Swart P, Mckenzie J A, Lohmann K C, . Isotopic Patterns in Modern Global Precipitation. Climate Change in Continental Isotopic Records, 1993 Washington D.C.: Am. Geophys. Union, 1-36.

[49]

Ruddiman W F. Earth’s Climate: Past and Future, 2002 New York: W. H. Freman and Company, 1-465.

[50]

Saito T, Yamanoi T, Morohoshi F, . Discovery of Mangrove Plant Pollen from the “Shukunohora Sandstone facies” Keyo Formation, Mizunami Group (Miocene), Gifu Prefecture, Japan. The Journal of the Geological Society of Japan, 1995, 101(9): 747-749.

[51]

Savin S M, Douglas R G, Stehli F G. Tertiary Marine Paleotemperatures. Geological Society of America, 1975, 86: 1499-1510.

[52]

Shackleton N J, Kennett J P. Paleotemperature History of the Cenzoic and the Initiation of Antarctic Glaciation: Oxygen and Carbon Isotope Analyses in DSDP Sites 277, 279 and 281. Initial Reports of the Deep Sea Drilling Project, 1975, 29: 743-755.

[53]

Singh R K, Gupta A K. Systematic Decline in Benthic Foraminiferal Species Diversity Linked to Productivity Increases over the Last 26 Ma in the Indian Ocean. Journal of Foraminiferal Reseach, 2005, 35(3): 219-227.

[54]

Stein R, Robert C. Siliciclastic Sediments at Sites 588, 590 and 591: Neogene and Paleoggene Evolution in the Southwest Pacific and Australian Climate. Initial Reports of the Deep Sea Drilling Project, 1986, 90: 1437-1455.

[55]

Talbot M. A Review of the Palaeohydrological Interpretation of Carbon and Oxygen Isotopic Ratios in Primary Lacustrine Carbonates. Chemistry Geology, 1990, 80: 261-279.

[56]

Wang Y, Deng T. A 25 m.y. Isotopic Record of Paleodiet and Environmental Change from Fossil Mammals and Paleosols from the NE Margin of the Tibetan Plateau. Earth and Planetary Science Letters, 2005, 236: 322-338.

[57]

Wang W M, Saito T, Nakagawa T. Palynostratigraphy and Climatic Implications of Neogene Deposits in the Himi Area of Toyama Prefecture, Central Japan. Review of Palaeobotany and Palynology, 2001, 117: 281-295.

[58]

Webb S D. A History of Savanna Vertebrates in the New World. Part I: North America. Annual Review of Ecology Systematics, 1997, 8: 355-380.

[59]

Wei G J, Li X H, Liu Y, . Geochemical Record of Chemical Weathering and Monsoon Climate Change since the Early Miocene in the South China Sea. Paleoceanography, 2006, 21 PA4214

[60]

White J M, Ager T A, Adam D P, . An 18 Million Year Record of Vegetation and Climate Change in Northwestern Canada and Alaska: Tectonic and Global Climatic Correlates. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 130: 293-306.

[61]

Wolfe J A. Tertiary Climates and Floristic Relationships at High Latitudes in the Northern Hemisphere. Palaeogeography, Palaeoclimatology, Palaeoecology, 1980, 30: 313-323.

[62]

Wolfe J A. Sundquist E T, Broecker W S. Distribuion of Major Vegetational Types during the Tertiary. Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Persent, 1985 Washington D.C.: AGU, 357-375.

[63]

Yang P, Sun Z C, Li D M, . Ostracoda Extinction and Explosion Events of the Mesozoic-Cenozoic in Qaidam Basin, Northwest China. Journal of Palaeogeograhy, 2000, 2(3): 69-74.

[64]

Zachos J, Pagani M, Sloan L, . Trends, Rhythms, and Aberratios in Global Climate 65 Ma to Present. Science, 2001, 292: 686-693.

[65]

Zachos J C, Gerald R D, Richard E Z. An Early Cenozoic Perspective on Greenhouse: Warming and Carbon-Cycle Dynamics. Nature, 2008, 451(17): 279-283.

[66]

Zhai R J. On a Collection of Miocene Mammals from Eastern Gansu. Pleovertebrata et Paleoanthropologia, 1959, 1: 139-140.

[67]

Zhang J, Li J J, Song C H, . Paleomagnetic Ages of Miocene Fluvio-Lacustrine Sediments in the Tianshui Basin, Western China. Journal of Asian Earth Sciences, 2013, 62: 341-348.

[68]

Zhuang G S, Hourigan J K, Koch P L, . Isotopic Constraints on Intensified Aridity in Central Asia around 12 Ma. Earth and Planetary Science Letters, 2011, 312: 152-163.

[69]

Zou H B, McKeegan K D, Xu X S, . Fe-Al-rich Tridymite-Hercynite Xenoliths with Positive Cerium Anomalies: Preserved Lateritic Paleosols and Implications for Miocene Climate. Chemical Geology, 2004, 207: 101-116.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/