Zircon Hf isotopes and geochemistry of the early paleoproterozoic high-Sr low-y quartz-diorite in the Quanji massif, NW China: Crustal growth and tectonic implications

Songlin Gong , Nengsong Chen , Hongyan Geng , Min Sun , Lu Zhang , Qinyan Wang

Journal of Earth Science ›› 2014, Vol. 25 ›› Issue (1) : 74 -86.

PDF
Journal of Earth Science ›› 2014, Vol. 25 ›› Issue (1) : 74 -86. DOI: 10.1007/s12583-014-0401-2
Article

Zircon Hf isotopes and geochemistry of the early paleoproterozoic high-Sr low-y quartz-diorite in the Quanji massif, NW China: Crustal growth and tectonic implications

Author information +
History +
PDF

Abstract

The metamorphosed Early Paleoproterozoic granitoids in the Quanji massif, Northwestern China provide constraints for relationship between the Tarim Craton and North China Craton. Among granitoids batholiths, rocks of the Mohe quartz-diorite show typically adakitic geochemical characteristics, with medium K2O/Na2O ratios (0.56–1.17) and high Sr (519–619 ppm) low Y (9.37–20.40 ppm) and Yb (0.97–1.77 ppm) concentrations. The rocks have ɛ Nd(t) values between +2.4 and +4.4 and depleted mantle Nd model ages of 2.43–2.59 Ga. The magmatic zircons have positive ɛ Hf(t) values ranging from +0.40 to +7.60 and depleted mantle Hf model ages of 2.43–2.70 Ga, with major peaks at ∼2.54 and ∼2.65 Ga. The geochemical and Nd-Hf isotopic characteristics indicate that the Mohe quartz-dioritic rocks might be formed by partial melting of high-pressure metamorphosed juvenile crustal rocks in post-orogenic extensional regime in the Early Paleoproterozoic. It suggests that important crustal growth occurred in the Quanji massif and the Tarim Craton at ∼2.4 and 2.5–2.7 Ga. The Quanji massif and Tarim Craton might share a similar crustal evolution history with the North China Craton in the Neoarchean.

Keywords

high-Sr and low-Y granitoid / zircon Hf isotope / crustal growth / Quanji massif / Tarim Craton / North China Craton

Cite this article

Download citation ▾
Songlin Gong, Nengsong Chen, Hongyan Geng, Min Sun, Lu Zhang, Qinyan Wang. Zircon Hf isotopes and geochemistry of the early paleoproterozoic high-Sr low-y quartz-diorite in the Quanji massif, NW China: Crustal growth and tectonic implications. Journal of Earth Science, 2014, 25(1): 74-86 DOI:10.1007/s12583-014-0401-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Atherton M P, Petford N. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 1993, 362: 144-146.

[2]

Ba J, Gong S L, Liao F X, . Re-Determining the Intrusion Age for the Protolith of the Mohe Gneiss in the Quanji Massif. Geological Science and Technology Information, 2012, 31(6): 98-101.

[3]

Blichert-Toft J, Chauvel C, Albarede F. Separation of Hf and Lu for High-Precision Isotope Analysis of Rock Samples by Magnetic Sector-Multiple Collector ICP-MS. Contributions to Mineralogy and Petrology, 1997, 127(3): 248-260.

[4]

Castillo P R. An Overview of Adakite Petrogenesis. Chinese Science Bulletin, 2006, 51(3): 257-268.

[5]

Chappell B W, White A J R. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 2001, 48(4): 489-499.

[6]

Chen N S, Gong S L, Sun M, . Precambrian Evolution of the Quanji Block, Northeastern Margin of Tibet: Insights from Zircon U-Pb and Lu-Hf Isotope Compositions. Journal of Asian Earth Sciences, 2009, 35(3): 367-376.

[7]

Chen N S, Wang X Y, Zhang H F, . Geochemistry and Nd-Sr-Pb Isotopic Compositions Granitoids from Qaidam and Oulongbuluke Micro-Blocks, NW China: Constraints on Basement Nature and Tectonic Affinity. Earth Science-Journal of China University of Geosciences, 2007, 32(1): 7-21.

[8]

Chen N S, Zhang L, Sun M, . U-Pb and Hf Isotopic Compositions of Detrial Zircons from the Paragneisses of the Quanji Massif, NW China: Implications for Its Early Tectonic Evolutionary History. Journal of Asian Earth Sciences, 2012, 54–55: 110-130.

[9]

Chen N S, Gong S L, Xia X P, . Zircon Hf Isotope of Yingfeng Rapakivi Granites from the Quanji Massif and ∼2.7 Ga Crustal Growth. Journal of Earth Sciences, 2013, 24(1): 29-41.

[10]

Chen N S, Liao F X, Wang L, . Late Paleoproterozoic Multiple Metamorphic Events in the Quanji Massif: Links with Tarim and North China Cratons and Implications for Assembly of the Columbia Supercontinent. Precambrian Research, 2013, 228: 102-116.

[11]

Chung S L, Liu D Y, Ji J Q, . Adakites from Continental Collision Zones: Melting of Thickened Lower Crust Beneath Southern Tibet. Geology, 2003, 31(11): 1021-1024.

[12]

Coleman R G, Peterman Z E. Oceanic Plagiogranite. Journal of Geophysical Research, 1975, 80(8): 1099-1108.

[13]

Davis G A. The Yanshan Belt of North China: Tectonics, Adakitic Magmatism, and Crustal Evolution. Earth Science Frontiers, 2003, 10(4): 373-384.

[14]

De la Roche H, Leterrier J, Grandclaude P, . A Classification of Volcanic and Plutonic Rocks Using R 1 R 2-Diagram and Major-Element Analyses—Its Relationships with Current Nomenclature. Chemical Geology, 1980, 29(1–4): 183-210.

[15]

Defant M J, Drummond M S. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 1990, 347: 662-665.

[16]

Defant M J, Xu J F, Kepezhinskas P, . Adakites: Some Variations on a Theme. Acta Petrologica Sinica, 2002, 18(2): 129-142.

[17]

Diwu C R, Sun Y, Guo A L, . Crustal Growth in the North China Craton at 2.5 Ga: Evidence from In Situ Zircon U-Pb Ages, Hf Isotopes and Whole-Rock Geochemistry of the Dengfeng Complex. Gondwana Research, 2011, 20(1): 149-170.

[18]

Drummond M S, Defant M J, Kepezhinskas P K. Petrogenesis of Slab-Derived Trondhjemite-Tonalite-Dacite/Adakite Magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1996, 87(1): 205-215.

[19]

Frost B R, Barnes C G, Collins W J, . A Geochemical Classification for Granitic Rocks. Journal of Petrology, 2001, 42(11): 2033-2048.

[20]

Gao S, Rudnick R L, Yuan H L, . Recycling Lower Continental Crust in the North China Craton. Nature, 2004, 432(7019): 892-897.

[21]

Geng Y S, Du L L, Ren L D. Growth and Reworking of the Early Precambrian Continental Crust in the North China Craton: Constraint from Zircon Hf Isotopes. Gondwana Research, 2012, 21(2–3): 517-529.

[22]

Gong S L, Chen N S, Wang Q Y, . Early Paleoproterozoic Magmatism in the Quanji Massif, Northeastern Margin of the Qinghai-Tibet Plateau and Its Tectonic Significance: LA-ICPMS U-Pb Zircon Geochronology and Geochemistry. Gondwana Research, 2012, 21(1): 152-166.

[23]

Griffin W L, Pearson N J, Belousova E, . The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147.

[24]

Guo F, Fan W M, Li C W. Geochemistry of Late Mesozoic Adakites from the Sulu Belt, Eastern China: Magma Genesis and Implications for Crustal Recycling Beneath Continental Collisional Orogens. Geological Magazine, 2006, 143(1): 1-13.

[25]

Guo Z F, Wilson M, Liu J Q. Post-Collisional Adakites in South Tibet: Products of Partial Melting of Subduction-Modified Lower Crust. Lithos, 2007, 96(1): 205-224.

[26]

He Y S, Li S G, Hoefs J, . Post-Collisional Granitoids from the Dabie Orogen: New Evidence for Partial Melting of a Thickened Continental Crust. Geochimica et Cosmochimica Acta, 2011, 75(13): 3815-3838.

[27]

Hou Z Q, Gao Y F, Qu X M, . Origin of Adakitic Intrusives Generated During Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 2004, 220(1): 139-155.

[28]

Hu N G, Wang X X, Sun Y G, . The Geochemistry Features, Origin of the Yingfeng Rapakivi Granite and Its Associated Rocks in North Qaidam Basin and the Geological Significance. Geological Review, 2007, 53(4): 731-745.

[29]

Huang F, He Y S. Partial Melting of the Dry Mafic Continental Crust: Implications for Petrogenesis of C-type Adakites. Chinese Science Bulletin, 2010, 55(22): 2428-2439.

[30]

Huang W, Zhang L, Ba J, . Detrital Zircon U-Pb Dating for K-Feldspar Leptynite Constrains the Age of Dakendaban Group. Geogoical Bulletin of China, 2011, 30(9): 1353-1359.

[31]

Jahn B M, Condie K C. Evolution of the Kaapvaal Craton as Viewed from Geochemical and Sm-Nd Isotopic Analysis of Intracratonic Pelites. Geochimica et Cosmochimica Acta, 1995, 59(11): 2239-2258.

[32]

Jiang N, Liu Y S, Zhou W G, . Derivation of Mesozoic Adakitic Magmas from Ancient Lower Crust in the North China Craton. Geochimica et Cosmochimica Acta, 2007, 71(10): 2591-2608.

[33]

Jiang N, Guo J H, Zhai M G, . 2.7 Ga Crust Growth in the North China Craton. Precambrian Research, 2010, 179(1): 37-49.

[34]

Kay R W, Kay S M. Andean Adakites: Three Ways to Make Them. Acta Petrologica Sinica, 2002, 18(3): 303-311.

[35]

Leech M L. Arrested Orogenic Development: Eclogitization, Delamination, and Tectonic Collapse. Earth and Planetary Science Letters, 2001, 185(1): 149-159.

[36]

Li X Y, Chen N S, Xia X P, . Constraints on Timing of the Early Paleoproterozoic Magmatism and Crustal Evolution of the Oulongbuluke Microcontinent: U-Pb and Lu-Hf Isotope Systems of Zircons from Mohe Granitic Pluton. Acta Petrologica Sinica, 2007, 23(2): 513-522.

[37]

Liu C H, Zhao G C, Sun M, . U-Pb and Hf Isotopic Study of Detrital Zircons from the Hutuo Group in the Trans-North China Orogen and Tectonic Implications. Gondwana Research, 2011, 20(1): 106-121.

[38]

Liu C H, Zhao G C, Sun M, . U-Pb and Hf Isotopic Study of Detrital Zircons from the Yejishan Group of the Lüliang Complex: Constraints on the Timing of Collision between the Eastern and Western Blocks, North China Craton. Sedimentary Geology, 2011, 236(1): 129-140.

[39]

Liu F, Guo J H, Lu X P, . Crustal Growth at ∼2.5 Ga in the North China Craton: Evidence from Whole-Rock Nd and Zircon Hf Isotopes in the Huai’an Gneiss Terrane. Chinese Science Bulletin, 2009, 54(24): 4704-4713.

[40]

Long X P, Yuan C, Sun M, . Archean Crustal Evolution of the Northern Tarim Craton, NW China: Zircon U-Pb and Hf Isotopic Constraints. Precambrian Research, 2010, 180(3): 272-284.

[41]

Lu S N. Preliminary Study of Precambrian Geology in the North Tibet-Qinghai Plateau, 2002 Beijing: Geological Publishing House, 1-125.

[42]

Lu S N, Li H K, Zhang C L, . Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments. Precambrian Research, 2008, 160(1): 94-107.

[43]

Lu S N, Yu H F, Li H K, . Precambrian Key Geological Events in Northwestern China and Global Tectonic Implications: Studies on Key Issues of Precambrian Geology in China, 2006 Beijing: Geological Publishing House, 1-206.

[44]

Ma C Q, Yang K G, Ming H L, . The Timing of Tectonic Transition from Compression to Extension in Dabieshan: Evidence from Mesozoic Granites. Science in China Series D:Earth Sciences, 2004, 47(5): 453-462.

[45]

Martin H, Smithies R H, Rapp R, . An Overview of Adakite, Tonalite-Tronhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 2005, 79(1): 1-24.

[46]

Patchett P J, Tatsumoto M. A Routine High-Precision Method for Lu-Hf Isotope, Geochemistry and Chronology. Contributions to Mineralogy and Petrology, 1980, 75(3): 263-267.

[47]

Pearce J A. Sources and Settings of Granitic Rock. Episodes, 1996, 19(4): 120-125.

[48]

Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 1984, 25(4): 956-983.

[49]

Peccerillo A, Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu, Northern Turkey. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81.

[50]

Peccerillo A, Barberio M R, Yirgu G, . Relationships between Mafic and Peralkaline Silicic Magmatism in Continental Rift Settings: A Petrological, Geochemical and Isotopic Study of the Gedemsa Volcano, Central Ethiopian Rift. Journal of Petrology, 2003, 44(11): 2003-2032.

[51]

Peng P, Guo J H, Windley B F, . Halaqin Volcano-Sedimentary Succession in the Central-Northern Margin of the North China Craton: Products of Late Paleoproterozoic Ridge Subduction. Precambrian Research, 2011, 187(1): 165-180.

[52]

Peng P, Zhai M G, Guo J H, . Nature of Mantle Source Contributions and Crystal Differentiation in the Petrogenesis of the 1.78 Ga Mafic Dykes in the Central North China Craton. Gondwana Research, 2007, 12(1): 29-46.

[53]

Peng P, Zhai M G, Ernst R E, . A 1.78 Ga Large Igneous Province in the North China Craton: The Xiong’er Volcanic Province and the North China Dyke Swarm. Lithos, 2008, 101(3): 260-280.

[54]

Pirajno F, Ernst R E, Borisenko A S, . Intraplate Magmatism in Central Asia and China and Associated Metallogeny. Ore Geology Reviews, 2009, 35(2): 114-136.

[55]

Pitcher W S. Atherton M P, Gribble C D. Granite: Typology, Geological Environment and Melting Relationships. Migmatites, Melting and Metamorphism, 1983 Cheshire: Shiva Publishing Ltd., 277-285.

[56]

Rapp R P, Watson E B. Dehydration Melting of Metabasalt at 8-32 kbar, Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 1995, 36(4): 891-931.

[57]

Rapp R P, Xiao L, Shmizu N. Experimental Constraints on the Origin of Potassium-Rich Adakites in Eastern China. Acta Petrologica Sinica, 2002, 18(3): 293-302.

[58]

Rudnick R L. Making Continental Crust. Nature, 1995, 378(6557): 571-578.

[59]

Scherer E, Münker C, Mezger K. Calibration of the Lutetium-Hafnium Clock. Science, 2001, 293(683): 683-687.

[60]

Sun S S, McDonough W F. Chemical and Isotopic Systematic of Ocean Basalts: Implications for Mantle Composition and Process. Magmatism in the Ocean Basins. Geological Society, London, 1989, 42(1): 313-345.

[61]

Vervoort J D, Patchett P J. Behaviour of Hafnium and Neodymium Isotopes in the Crust: Constraints from Precambrian Crustally Derived Granites. Geochimica et Cosmochimica Acta, 1996, 60(19): 3717-3733.

[62]

Vervoort J D, Patchett P J, Soderlund U, . Isotopic Composition of Yb and the Determination of Lu Concentrations and Lu/Hf Ratios by Isotopic Dilution Using MC-ICPMS. Geochemistry, Geophysics, Geosystems, 2004, 5 11 2004GC000721

[63]

Wan Y S, Liu D Y, Wang S J, . Juvenile Magmatism and Crustal Recycling at the End of Neoarchean in Western Shandong Province, North China Craton: Evidence from SHRIMP Zircon Dating. American Journal of Science, 2011, 310(10): 1503-1552.

[64]

Wan Y S, Liu D Y, Wang W, . Provenance of Meso-to Neoproterozoic Cover Sediments at the Ming Tombs, Beijing, North China Craton: An Integrated Study of U-Pb Dating and Hf Isotopic Measurement of Detrital Zircons and Whole-Rock Geochemistry. Gondwana Research, 2011, 20(1): 219-242.

[65]

Wang Q, McDermott F, Xu J F, . Cenozoic K-Rich Adakitic Volcanic Rocks in the Hohxil Area, Northern Tibet: Lower-Crustal Melting in an Intracontinental Setting. Geology, 2005, 33(6): 465-468.

[66]

Wang Q, Wyman D A, Xu J F, . Petrogenesis of Cretaceous Adakitic and Shoshonitic Igneous Rocks in the Luzong Area, Anhui Province (Eastern China): Implications for Geodynamics and Cu-Au Mineralization. Lithos, 2006, 89(3): 424-446.

[67]

Wang Q, Xu J F, Jian P, . Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 2006, 47(1): 119-144.

[68]

Wang Q, Wyman D A, Xu J F, . Early Cretaceous Adakitic Granites in the Northern Dabie Complex, Central China: Implications for Partial Melting and Delamination of Thickened Lower Crust. Geochimica et Cosmochimica Acta, 2007, 71(10): 2609-2636.

[69]

Wang Q, Wyman D A, Xu J F, . Partial Melting of Thickened or Delaminated Lower Crust in the Middle of Eastern China: Implications for Cu-Au Mineralization. Journal of Geology, 2007, 115(2): 149-161.

[70]

Wang Q, Xu J F, Zhao Z H, . Cretaceous High-Potassium Intrusive Rocks in the Yueshan-Hongzhen Area of East China: Adakites in an Extensional Tectonic Regime within a Continent. Geochemical Journal, 2004, 38(5): 417-434.

[71]

Wang Q Y, Chen N S, Li X Y, . LA-ICPMS Zircon U-Pb Geochronological Constraints on the Tectonothermal Evolution of the Early Paleoproterozoic Dakendaban Group in the Quanji Block, NW China. Chinese Science Bulletin, 2008, 53(18): 2849-2858.

[72]

Wang Q Y, Pan Y M, Chen N S, . Proterozoic Polymetamorphism in the Quanji Block, Northwestern China: Evidence from Microtextures, Garnet Compositions and Monazite CHIME Ages. Journal of Asian Earth Sciences, 2009, 34(5): 686-698.

[73]

White A J R. Sources of Granite Magma. Abstracts of Papers to be Presented at the Annual Meetings of the Geological Society of America and Associated Societies, San Diego, California, November 5–8, 1979, 1979, 11 539.

[74]

Xia X P, Sun M, Zhao G C, . U-Pb and Hf Isotopic Study of Detrital Zircons from the Wulashan Khondalites: Constraints on the Evolution of the Ordos Terrane, Western Block of the North China Craton. Earth and Planetary Science Letters, 2006, 241(3): 581-593.

[75]

Xiao L, Clemens J D. Origin of Potassic (C-Type) Adakite Magmas: Experimental and Field Constraints. Lithos, 2007, 95(3): 399-414.

[76]

Xiao L, Zhang H F, Clemens J D, . Late Triassic Granitoids of the Eastern Margin of the Tibetan Plateau: Geochronology, Petrogenesis and Implications for Tectonic Evolution. Lithos, 2007, 96(3): 436-452.

[77]

Xiao L, Rapp R P, Xu J F. The Role of Deep Processes Controls on Variation of Compositions of Adakitic Rocks. Acta Petrologica Sinica, 2004, 20(20): 219-228.

[78]

Xiong X L, Li X H, Xu J F, . Extremely High-Na Adakite-Like Magmas Derived from Alkali-Rich Basaltic Underplate: The Late Cretaceous Zhantang Andesites in the Huichang Basin, SE China. Geochemical Journal, 2003, 37(2): 233-252.

[79]

Xiong X L, Liu X C, Zhu Z M, . Adakitic Rocks and Destruction of the North China Craton: Evidence from Experimental Petrology and Geochemistry. Science China Series D: Earth Sciences, 2011, 54(6): 858-870.

[80]

Xu H J, Ma C Q, Ye K. Early Cretaceous Granitoids and Their Implications for the Collapse of the Dabie Orogen, Eastern China: SHRIMP Zircon U-Pb Dating and Geochemistry. Chemical Geology, 2007, 240(3): 238-259.

[81]

Xu H J, Ma C Q, Zhang J F. Generation of Early Cretaceous High-Mg Adakitic Host and Enclaves by Magma Mixing, Dabie Orogen, Eastern China. Lithos, 2012, 142: 182-200.

[82]

Xu H J, Ma C Q, Zhang J F, . Early Cretaceous Low-Mg Adakitic Granites from the Dabie Orogen, Eastern China: Petrogenesis and Implications for Destruction of the Overthickened Lower Continental Crust. Gondwana Research, 2012, 23(1): 190-207.

[83]

Xu J F, Shinjo R, Defant M J, . Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust?. Geology, 2002, 30(12): 1111-1114.

[84]

Xu W L, Wang Q H, Wang D Y, . Mesozoic Adakitic Rocks from the Xuzhou-Suzhou Area, Eastern China: Evidence for Partial Melting of Delaminated Lower Continental Crust. Journal of Asian Earth Sciences, 2006, 27(4): 454-464.

[85]

Xu Z Q, Yang J S, Wu C L, . Timing and Mechanism of Formation and Exhumation of the Northern Qaidam Ultrahigh-Pressure Metamorphic Belt. Journal of Asian Earth Sciences, 2006, 28(2): 160-173.

[86]

Yin C Q, Zhao G C, Guo J H, . U-Pb and Hf Isotopic Study of Zircons of the Helanshan Complex: Constrains on the Evolution of the Khondalite Belt in the Western Block of the North China Craton. Lithos, 2011, 122(1): 25-38.

[87]

Yogodzinski G M, Kelemen P B. Slab Melting in the Aleutians: Implication of an Ion Probe Study of Clinopyroxene in Primitive Adakite and Basalt. Earth and Planetary Science Letters, 1998, 158(1): 53-65.

[88]

Zhang C, Ma C Q, Holtz F. Origin of High-Mg Adakitic Magmatic Enclaves from the Meichuan Pluton, Southern Dabie Orogen (Central China): Implications for Delamination of the Lower Continental Crust and Melt-Mantle Interaction. Lithos, 2010, 119(3): 467-484.

[89]

Zhang C L, Li Z X, Li X H, . Neoproterozoic Bimodal Intrusive Complex in the Southwestern Tarim Block, Northwest China: Age, Geochemistry and Implications for the Rifting of Rodinia. International Geology Review, 2006, 48(2): 112-128.

[90]

Zhang C L, Li Z X, Li X H, . An Early Paleoproterozoic High-K Intrusive Complex in Southwestern Tarim Block, NW China: Age, Geochemistry, and Tectonic Implications. Gondwana Research, 2007, 12(1): 101-112.

[91]

Zhang H F, Gao S, Zhong Z Q, . Geochemical and Sr-Nd-Pb Isotopic Compositions of Cretaceous Granitoids: Constraints on Tectonic Framework and Crustal Structure of the Dabieshan Ultrahigh-Pressure Metamorphic Belt, China. Chemical Geology, 2002, 186(3): 281-299.

[92]

Zhang J X, Wan Y S, Xu Z Q, . Discovery of Basic Granulite and Its Formation Age in Delingha Area, North Qaidam Mountains. Acta Petrologica Sinica, 2001, 17(3): 453-458.

[93]

Zhang L, Liao F X, Ba J, . Mineral Evolution and Zircon Geochronogy of Mafic Enclave in Granitic Gneiss of the Quanji Block and Implications for Paleoproterozoic Regional Metamorphism. Earth Science Frontiers, 2011, 18(2): 79-84.

[94]

Zhang Q, Wang Y, Wang Y L, . Preliminary Study on the Components of the Lower Crust in East China Plateau during Yanshanian Period: Constraints on Sr and Nd Isotopic Compositions of Adakite-Like Rocks. Acta Petrologica Sinica, 2001, 17(4): 505-513.

[95]

Zhang Q, Xu J F, Wang Y, . On the Diversity of Adakite. Geological Bulletin of China, 2004, 23(9–10): 959-965.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/