Constraining shear wave velocity and density contrast at the inner core boundary with PKiKP/P amplitude ratio

Xiangfang Zeng , Sidao Ni

Journal of Earth Science ›› 2013, Vol. 24 ›› Issue (5) : 716 -724.

PDF
Journal of Earth Science ›› 2013, Vol. 24 ›› Issue (5) : 716 -724. DOI: 10.1007/s12583-013-0371-9
Special Column on East-West Asymmetry of the Inner Core and Earth Rotational Dynamics

Constraining shear wave velocity and density contrast at the inner core boundary with PKiKP/P amplitude ratio

Author information +
History +
PDF

Abstract

Shear velocity and density contrast across the inner core boundary are essential for studying deep earth dynamics, geodynamo and geomagnetic evolution. In previous studies, amplitude ratio of PKiKP/PcP at short distances and PKiKP/P at larger distances are used to constrain the shear velocity and density contrast, and shear velocity in the top inner core is found to be substantially smaller than the PREM prediction. Here we present a large dataset of PKiKP/P amplitude ratio measured on 420 seismic records at ILAR array in Alaska for the distance range of 80°–90°, where the amplitude ratio is sensitive to shear velocity and density contrast. At high frequency (up to 6 Hz), mantle attenuation is found to have substantial effects on PKiKP/P. After the attenuation effects are taken into account, we find that the density contrast is about 0.2–1.0 g/cm3, and shear velocity of inner core is 3.2–4.0 km/s, close to the PREM (Preliminary Reference Earth Model) prediction (0.6 g/cm3 and 3.5 km/s, respectively). The relatively high shear velocity in inner core does not require large quantities of defects or melts as proposed in previous studies.

Keywords

inner core boundary / shear velocity of inner core / density contrast / core phase

Cite this article

Download citation ▾
Xiangfang Zeng, Sidao Ni. Constraining shear wave velocity and density contrast at the inner core boundary with PKiKP/P amplitude ratio. Journal of Earth Science, 2013, 24(5): 716-724 DOI:10.1007/s12583-013-0371-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Antonangeli D, Occelli F, Requardt H, . Elastic Anisotropy in Textured Hcp-Iron to 112 GPa from Sound Wave Propagation Measurements. Earth Planet. Sci. Lett., 2004, 225(1): 243-251.

[2]

Badro J, Fiquet G, Guyot F, . Effect of Light Elements on the Sound Velocities in Solid Iron: Implications for the Composition of Earth’s Core. Earth Planet. Sci. Lett., 2007, 254(1–2): 233-238.

[3]

Belonoshko A B, Skorodumova N V, Davis S, . Origin of the Low Rigidity of the Earth’s Inner Core. Science, 2007, 316(5831): 1603-1605.

[4]

Birch F. Composition of the Earth Mantle. Geophys. J. R. Astron. Soc., 1961, 4(S1): 295-311.

[5]

Bolt B, Qamar A. Upper Bound to the Density Jump at the Boundary of the Earth’s Inner Core. Nature, 1970, 228: 148-150.

[6]

Calvet M, Margerin L. Constraints on the Grain Size and Stable Iron Phases in the Upper Most Inner Core from Multiple Scattering Modeling of Seismic Velocity and Attenuation. Earth Planet. Sci. Lett., 2008, 267: 200-212.

[7]

Cao A, Masson Y, Romanowicz B. Short Wavelength Topography on the Inner-Core Boundary. Proc. Natl. Acad. Sci. USA, 2007, 104(1): 31-35.

[8]

Cao A, Romanowicz B. Constraints on Density and Shear Velocity Contrasts at the Inner Core Boundary. Geophys. J. Int., 2004, 157(3): 1146-1151.

[9]

Cao A, Romanowicz B, Takeuchi N. An Observation of PKJKP: Inferences on Inner Core Shear Properties. Science, 2005, 308(5727): 1453-1455.

[10]

Choy G L, Cormier V F. The Structure of the Inner Core Inferred from Short-Period and Broadband GDSN Data. Geophys. J. R. Astr. Soc., 1983, 72(1): 1-21.

[11]

Cormier V F, Richards P G. Comments on’ The Damping of Core Waves’ by Anthony Qamar and Alfredo Eisenberg. J. Geophys. Res., 1976, 81(17): 3066-3068.

[12]

Cummins P, Johnson L R. Short-Period Body Wave Constraints of Properties of the Earth’s Inner Core Boundary. J. Geophys. Res., 1988, 3: 9058-9074.

[13]

Deguen R, Alboussière T, Brito D. On the Existence and Structure of a Mush at the Inner Core Boundary of the Earth. Phys. Earth Planet. Inter., 2007, 164(1): 36-49.

[14]

Derr J S. Internal Structure of the Earth Inferred from Free Oscillations. J. Geophys. Res., 1969, 74: 5202-5220.

[15]

Deuss A. Normal Mode Constraints on Shear and Compressional Wave Velocity of the Earth’s Inner Core. Earth Planet. Sci. Lett., 2008, 268(3–4): 364-375.

[16]

Durand S, Matas J, Ford S, . Insights from ScS-S Measurements on Deep Mantle Attenuation. Earth Planet. Sci. Lett., 2013

[17]

Dziewonski A M, Anderson D L. Preliminary Reference Earth Model. Phys. Earth Planet. Inter., 1981, 25(4): 297-356.

[18]

Dziewonski A, Gilbert F. Solidity of the Inner Core of the Earth Inferred from Normal Mode Observations. Nature, 1971, 234: 465-466.

[19]

Earle P S, Shearer P M. Observations of PKKP Precursors Used to Estimate Small-Scale Topography on the Core-Mantle Boundary. Science, 1997, 277: 667-670.

[20]

Hage H. Velocity Constraints for the Inner Core Inferred from Long Period PKP Amplitude. Phys. Earth Planet. Inter., 1983, 31: 171-185.

[21]

Jackson I, Gerald J D F, Kokkonen H. High-Temperature Viscoelastic Relaxation in Iron and Its Implications for the Shear Modulus and Attenuation of the Earth’s Inner Core. J. Geophys. Res., 2000, 105(B10): 23605-23634.

[22]

Jiang G, Zhao D. Observation of High-Frequency PKiKP in Japan: Insight into Fine Structure of Inner Core Boundary. Journal of Asian Earth Sciences, 2012, 59: 167-184.

[23]

Kantor A P, Kantor I Y, Kurnosov A V, . Sound Wave Velocities of Fcc Fe-Ni Alloy at High Pressure and Temperature by Mean of Inelastic X-Ray Scattering. Phys. Earth Planet. Inter., 2007, 164(1–2): 83-89.

[24]

Kawakatsu H. Sharp and Seismically Transparent Inner Core Boundary Region Revealed by an Entire Network Observation of Near-Vertical PKiKP. Earth Planets Space, 2006, 58: 855-863.

[25]

Koper K, Dombrovskaya M. Seismic Properties of the Inner Core Boundary from PKiKP/P Amplitude Ratios. Earth Planet. Sci. Lett., 2005, 237(3–4): 680-694.

[26]

Koper K, Pyle M. Observations of PKiKP/PcP Amplitude Ratios and Implications for Earth Structure at the Boundaries of the Liquid Core. J. Geophys. Res., 2004, 109 B03301

[27]

Krasnoshchekov D N, Kaazik P B, Ovtchinnikov V M. Seismological Evidence for Mosaic Structure of the Surface of the Earth’s Inner Core. Nature, 2005, 435(7041): 483-487.

[28]

Labrosse S, Poirier J, Mouël J. The Age of the Inner Core. Earth Planet. Sci. Lett., 2001, 190(3): 111-123.

[29]

Lehmann I. P’. Publications du Bureau Central Seismologique International. Série A Travaux Scientifiques, 1936, 14: 87-115.

[30]

Lin J F, Sturhahn W, Zhao J, . Sound Velocities of Hot Dense Iron: Birch’s Law Revisited. Science, 2005, 308(5730): 1892-1894.

[31]

Mao H K, Shu J, Shen G, . Elasticity and Rheology of Iron above 220 GPa and the Nature of the Earth’s Inner Core. Nature, 1998, 396(6713): 741-743.

[32]

Masters G, Gubbins D. On the Resolution of Density within the Earth. Phys. Earth Planet. Inter., 2003, 140: 159-167.

[33]

McNamara D E, Buland R P. Ambient Noise Levels in the Continental United States. Bull. Seis. Soc. Am., 2004, 94(4): 1517-1527.

[34]

Montagner J P, Kennett B L N. How to Reconcile Body-Wave and Normal-Mode Reference Earth Models. Geophys. J. Int., 1996, 125(1): 229-248.

[35]

Nimmo F. Thermal and Compositional Evolution of the Core. Treatise on Geophysics, 2007, 9: 217-241.

[36]

Poupinet G, Kennett B L N. On the Observation of High Frequency PKiKP and Its Coda in Australia. Phys. Earth Planet. Inter., 2004, 146(3–4): 497-511.

[37]

Rosat S, Rogister Y, Crossley D, . A Search for the Slichter Triplet with Superconducting Gravimeters: Impact of the Density Jump at the Inner Core Boundary. Journal of Geodynamics, 2006, 41(1–3): 296-306.

[38]

Rost S, Revenaugh J. Small-Scale Changes of Core-Mantle Boundary Reflectivity Studied Using Core Reflected PcP. Phys. Earth Planet. Inter., 2004, 145(1–4): 19-36.

[39]

Shearer P, Masters G. The Density and Shear Velocity Contrast at the Inner Core Boundary. Geophys. J. Int., 1990, 102: 491-498.

[40]

Song X, Helmberger D. Velocity Structure near the Inner Core Boundary from Waveform Modeling. J. Geophys. Res., 1992, 97: 6573-6586.

[41]

Song X, Helmberger D. A P Wave Velocity Model of Earth’s Core. J. Geophys. Res., 1995, 100(B6): 9817-9830.

[42]

Souriau A, Souriau M. Ellipticity and Density at the Inner Core Boundary from Subcritical PKiKP and PcP Data. Geophys. J. Int., 1989, 98: 39-54.

[43]

Tkalčić H, Cormier V F, Kennett B L N, . Steep Reflections from the Earth’s Core Reveal Small-Scale Heterogeneity in the Upper Mantle. Phys. Earth Planet. Inter., 2010, 178(1–2): 80-91.

[44]

Tkalčić H, Kennett B L N, Cormier V F. On the Inner-Outer Core Density Contrast from PKiKP/PcP Amplitude Ratios and Uncertainties Caused by Seismic Noise. Geophys. J. Int., 2009, 179(1): 425-443.

[45]

Vidale J, Earle P. Fine-Scale Heterogeneity in the Earth’s Inner Core. Nature, 2000, 404: 273-275.

[46]

Vocadlo L, Dobson D P, Wood I G. Ab Initio Calculations of the Elasticity of Hcp-Fe as a Function of Temperature at Inner-Core Pressure. Earth Planet. Sci. Lett., 2009, 288(3–4): 534-538.

[47]

Wen L, Helmberger D. Ultra-Low Velocity Zones near the Core-Mantle Boundary from Broadband PKP Precursor. Science, 1998, 279: 1701-1703.

[48]

Yu W, Wen L, Niu F. Seismic Velocity Structure in the Earth’s Outer Core. J. Geophys. Res., 2005, 110 B02302

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/