Detection of the inner core translational triplet using superconducting gravimetric observations

Wenbin Shen , Hao Ding

Journal of Earth Science ›› 2013, Vol. 24 ›› Issue (5) : 725 -735.

PDF
Journal of Earth Science ›› 2013, Vol. 24 ›› Issue (5) : 725 -735. DOI: 10.1007/s12583-013-0369-3
Special Column on East-West Asymmetry of the Inner Core and Earth Rotational Dynamics

Detection of the inner core translational triplet using superconducting gravimetric observations

Author information +
History +
PDF

Abstract

Based upon seven superconducting gravimeter (SG) records of 20 000 h length after the 2004 Sumatra earthquake, four methods, namely the ensemble empirical mode decomposition (EEMD), the multi-station experiment (MSE) technique, the autoregressive (AR) method and the product spectrum analysis (PSA) method, are chosen jointly together to detect the inner core translational modes (1S1). After the conventional pretreatment, each of the seven simultaneous residual gravity series is divided into five segments with an 80% overlap, and then EEMD is applied to all the 35 residual SG series as a dyadic filter bank to get 35 filtered series. After then, according to different stations and different time windows, five new simultaneous gravity datasets are obtained. After using MSE for each of the five new datasets, the AR method is used to demodulate some known harmonic signals from the new sequences that obtained by using MSE, and three demodulated product spectra are obtained. Then, according to two criterions, two clear spectral peaks at periods of 4.548 9±2.3×10−5 and 3.802 3±3.2×10−5 h corresponding respectively to the singlets m=−1 and m=+1 are identified from various spectral peaks, and they are close to the predictions of the 1066A model given by Rieutord (2002), but no spectral peak corresponding to the singlet m=0 is found. We conclude that the selected two peaks might be the observed singlets of the Slichter triplet.

Keywords

Slichter triplet / superconducting gravimeter / EEMD / multi-station experiment technique / product spectrum analysis

Cite this article

Download citation ▾
Wenbin Shen, Hao Ding. Detection of the inner core translational triplet using superconducting gravimetric observations. Journal of Earth Science, 2013, 24(5): 725-735 DOI:10.1007/s12583-013-0369-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Busse F H. On the Free Oscillation of the Earth’s Inner Core. J. Geophys. Res., 1974, 79(5): 753-757.

[2]

Chao B F, Gilbert F. Autoregressive Estimation of Complex Eigenfrequencies in Low Frequency Seismic Spectra. Geophys. J. R. Astron. Soc., 1980, 63(3): 641-657.

[3]

Courtier N, Ducarme B, Goodkind J, . Global Superconducting Gravimeter Observations and the Search for the Translational Modes of the Inner Core. Phys. Earth Planet. Int., 2000, 117(1–4): 3-20.

[4]

Crossley D, Rochester M G, Peng Z R. Slichter Modes and Love Numbers. Geophys. Res. Lett., 1992, 19(16): 1679-1682.

[5]

Dwivedi S, Mittal A K. Forecasting the Duration of Active and Break Spells in Intrinsic Mode Functions of Indian Monsoon Intraseasonal Oscillations. Geophys. Res. Lett., 2007, 34 16 L16827

[6]

Dziewonski A M, Anderson D L. Preliminary Reference Earth Model. Phys. Earth Planet. Int., 1981, 25: 297-356.

[7]

Guo J Y, Dierks O, Neumeyer J, . Weighting Algorithms to Stack Superconducting Gravimeter Data for the Potential Detection of the Slichter Modes. J. Geodyn., 2006, 41(1–3): 326-333.

[8]

Guo J Y, Dierks O, Neumeyer J, . A Search for the Slichter Modes in Superconducting Gravimeter Records Using a New Method. Geophys. J. Int., 2007, 168(2): 507-517.

[9]

Hinderer J, Crossley D, Jensen O. A Search for the Slichter Triplet in Superconducting Gravimeter Data. Phys. Earth Planet. Int., 1995, 90(3–4): 183-195.

[10]

Huang N E, Shen Z, Long S R, . The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. R. Soc. Lond. A., 1998, 454(1971): 903-995.

[11]

Jackson L P, Mound J E. Geomagnetic Variation on Decadal Time Scales: What can We Learn from Empirical Mode Decomposition?. Geophys. Res. Lett., 2010, 37 14 L14307

[12]

Jensen O, Hinderer J, Crossley D J. Noise Limitations in the Core Mode Band of Superconducting Gravimeter Data. Phys. Earth Planet. Inter., 1995, 90(3–4): 169-181.

[13]

Koper D K, Dombrovskaya M. Seismic Properties of the Inner Core Boundary from PKiKP/P Amplitude Ratios. Earth and Planetary Science Letters, 2005, 237(3–4): 680-694.

[14]

Peng Z R. Effects of a Mushy Transition Zone at the Inner Core Boundary on Slichter Modes. Geophys. J. Int., 1997, 131(3): 607-617.

[15]

Rosat S, Hinderer J, Crossley D, . The Search for the Slichter Mode: Comparison of Noise Levels of Superconducting Gravimeters and Investigation of a Stacking Method. Phys. Earth Planet. Int., 2003, 140(1–3): 183-202.

[16]

Rosat S, Sato T, Imanishi Y, . High-Resolution Analysis of the Gravest Seismic Normal Modes after the 2004 M w=9 Sumatra Earthquake Using Superconducting Gravimeter Data. Geophys. Res. Lett., 2005, 32 13 L13304

[17]

Rosat S, Rogister Y, Crossley D, . A Search for the Slichter Triplet with Superconducting Gravimeters: Impact of the Density Jump at the Inner Core Boundary. J. Geodyn., 2006, 41(1–3): 296-306.

[18]

Rieutord M. Slichter Modes of the Earth Revisited. Phys. Earth Planet. Inter., 2002, 131(3–4): 269-278.

[19]

Rogister Y. Spliting of Seismic-Free Oscillations and of the Slichter Triplet Using the Normal Mode Theory of a Ritating, Ellipsoidal Earth. Phys. Earth Planet. Inter., 2003, 140(1–3): 169-182.

[20]

Shen W B, Wang D J, Hwang C W. Anomalous Signals Prior to Wenchuan Earthquake Detected by Superconducting Gravimeter and Broadband Seismometers Records. Journal of Earth Science, 2011, 22(5): 640-651.

[21]

Shen W B, Wu B. A Case Study of Detecting the Triplet of 3S1 Using Superconducting Gravimeter Records with an Alternative Data Preprocessing Technique. Ann. Geophys., 2012, 55(2): 293-300.

[22]

Smylie D E. The Inner Core Translational Triplet and the Density near Earth’s Center. Science, 1992, 255(5052): 1678-1682.

[23]

Smylie D E, Hinderer J, Richter B, . The Product Spectra of Gravity and Barometric Pressure in Europe. Phys. Earth Planet. Int., 1993, 80(3–4): 135-157.

[24]

Sun H P, Xu J Q, Ducarme B. Detect the Earth’s Solid Inner Core Translational Oscillations Based on the International Superconducting Gravimeter Observations. Chinese Science Bulletin, 2004, 49(11): 1165-1176.

[25]

Thomas E R, Dennis P F, Bracegirdle T J, . Ice Core Evidence for Significant 100-Year Regional Warming on the Antarctic Peninsula. Geophys. Res. Lett., 2009, 36 20 L20704

[26]

Vasudevan K, Cook F A. Empirical Mode Skeletonization of Deep Crustal Seismic Data: Therory and Applications. J. Geophys. Res., 2000, 105(B4): 7845-7856.

[27]

Venedikov A P, Arnoso J, Vieira R. VAV: A Program for Tidal Data Processing. Computers & Geosciences, 2003, 29(4): 487-502.

[28]

Xu J Q, Sun H P, Zhou J C. Experimental Detection of the Inner Core Translational Triplet. Chinese Science Bulletin, 2010, 55(3): 276-283.

[29]

Wang D J. Study of Low-Frequency Earth Free Oscillations Based on Global Superconducting Gravimeter Data: [Dissertation], 2012 Wuhan: Wuhan University, 68-112.

[30]

Widmer R. What can Superconducting Gravimeters Contribute to Normal Mode Seismology?. Bull. Seism. Soc. Am., 2003, 93(3): 1370-1380.

[31]

Wu Z H, Huang N E. Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method. Adv. Adapt. Data Anal., 2009, 1: 1-41.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/