Degree one loading by pressure variations at the CMB

Ming Fang , Bradford H. Hager , Weijia Kuang

Journal of Earth Science ›› 2013, Vol. 24 ›› Issue (5) : 736 -749.

PDF
Journal of Earth Science ›› 2013, Vol. 24 ›› Issue (5) : 736 -749. DOI: 10.1007/s12583-013-0367-5
Special Column on East-West Asymmetry of the Inner Core and Earth Rotational Dynamics

Degree one loading by pressure variations at the CMB

Author information +
History +
PDF

Abstract

Hemispherical asymmetry in core dynamics induces degree-1 pressure variations at the core mantle boundary (CMB), which in turn deforms the overlaying elastic mantle, at the same time keeps center of mass of the whole Earth stationary in space. We develop a systematic procedure to deal with the degree-1 CMB pressure loading. We find by direct calculation a surprisingly negative load Love number h 1=−1.425 for vertical displacement. Further analysis indicates that the negative h 1 corresponds to thickening above the positive load that defies intuition that pressure inflation pushes overlaying material up and thins the enveloping shell. We also redefine the pressure load Love numbers in general to enable comparison between the surface mass load and the CMB pressure load for the whole spectrum of harmonic degrees. We find that the gravitational perturbations from the two kinds of loads at degrees n>1 are very similar in amplitude but opposite in sign. In particular, if the CMB pressure variation at degree 2 is at the level of ∼1 hpa/yr (1 cm water height per year), it would perturb the variation of Earth’s oblateness, known as the J 2, at the observed level.

Keywords

Solid Earth / Torsional Oscillation / Outer Core / Mantle Convection / Core Mantle Boundary

Cite this article

Download citation ▾
Ming Fang, Bradford H. Hager, Weijia Kuang. Degree one loading by pressure variations at the CMB. Journal of Earth Science, 2013, 24(5): 736-749 DOI:10.1007/s12583-013-0367-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aki K, Richards P G. Quantitative Seismology, 1980 Sausalito, CA: University Sci. Book

[2]

Alterrman Z, Jarrosh H, Pekeris C L. Oscillation of the Earth. Proc. R. Soc. Lond. A., 1959, 252(1268): 80-95.

[3]

Buffett B A. Gravitational Oscillations in the Length of Day. Geophys. Res. Lett., 1996, 23(17): 2279-2282.

[4]

Cheng M K, Shum C K, Tapley B D. Determination of Long-Term Changes in the Earth’s Gravity Field from Satellite Laser Ranging Observations. J. Geophys. Res., 1997, 102(B10): 22377-22390.

[5]

Cheng M K, Tapley B D. Variaitons in the Earth’s Oblateness during the Past 28 Years. J. Geophys. Res., 2004, 109 B9 B09402

[6]

Conrad C P, Hager B H. Spatial Variation in the Rate of Sea Level Rise Caused by the Present-Day Melting of Glaciers and Ice Sheets. Geophys. Res. Lett., 1997, 24(12): 1503-1506.

[7]

Cox C M, Chao B F. Detection of a Large-Scale Mass Redistribution in the Terrestrial System since 1998. Science, 2002, 297(5582): 831-833.

[8]

Dahlen F A. The Passive Influence of the Oceans upon the Rotation of the Earth. Geophys. J. R. Astron. Soc., 1976, 46(2): 363-406.

[9]

Dahlen F A, Tromp J. Theoretical Global Seismology, 1998 Princeton: Princeton Uni. Press

[10]

Dickey J O, Marcus S L, de Viron O, . Recent Earth Oblateness Variations: Unraveling Climate and Postglacial Rebound Effects. Science, 2002, 298(5600): 1975-1977.

[11]

Dumberry M, Bloxham J. Variation in Earth’s Gravity Field Caused by Torsional Oscillation in the Core. Goephys. J. Int., 2004, 159(2): 417-434.

[12]

Dziewonski A M, Anderson D L. Preliminary Reference Earth Model. Phys. Earth Planet. Int., 1981, 25(4): 297-356.

[13]

Fang M. Static Deformation of the Outer Core. Dynamics of the Ice Age Earth. Georesearch Forum, 1998, 3–4: 155-190.

[14]

Fang M, Hager B H. Vertical Deformation and Absolute Gravity. Geophy. J. Int., 2001, 146: 539-548.

[15]

Fang M, Hager B H, Herring T A. Surface Deformation Caused by Pressure Changes in the Fluid Core. Geophys. Res. Lett., 1996, 23(12): 1493-1496.

[16]

Farrell W E. Deformation of the Earth by Surface Loads. Rev. Geophys. & Space Phys., 1972, 10(3): 761-797.

[17]

Gire C, Le Mouël J L. Tangentially Geostrophic Flow at Three Core-Mantle Boundary Compatible with the Observed Geomagnetic Secular Variation: The Large Scale Component of the Flow. Phy. Earth Planet. Inter., 1990, 59(4): 259-287.

[18]

Glatzmaier G A, Roberts P H. A Three-Dimensional Self-Consistent Computer Simulation of a Geomagnetic Field Reversal. Phy. Earth Planet. Inter., 1995, 91(1–3): 63-75.

[19]

Greff M P, LeMouël J L. Surface Gravitational Field and Topography Changes Induced by the Earth’s Fluid Core Motions. J. Geodesy, 2004, 78: 386-392.

[20]

Gubbins D, Sreenivasan B, Mound J, . Melting of the Earth’s Inner Core. Nature, 2011, 473: 361-363.

[21]

Hager, B. H., Clayton, R. W., 1989. Constraints on the Structure of Mantle Convection Using Seismic Observation, Flow Model, and the Geoid. In: Peltier, R. W., ed., Mantle Convection. Gordon & Breach, New York

[22]

Heiskanen W A, Moritz H. Physical Geodesy, 1968 New York: Freeman & Company

[23]

Irving J C E, Deuss A, Woodhouse J H. Normal Mode Coupling due to Hemispherical Anisotropic Structure in Earth’s Inner Core. Geophys. J. Int., 2009, 178(2): 962-975.

[24]

Jackson A, Bloxham J, Gubbins D. Time-Dependent Flow at the Core Surface and Conservation of Angular Momentum in the Coupled Core-Mantle System. Dynamics of the Earth’s Deep Interior and Earth Rotation. AGU Geophysical Monograph, 1993, 72: 97-107.

[25]

Kuang W, Bloxham J. A Numerical Model of the Generation of the Earth’s Magnetic Field. Nature, 1997, 365: 371-374.

[26]

Longman I M. A Green’s Function for Determining the Deformation of the Earth under Surface Mass Laods, 1, Theory. J. Geophys. Res., 1962, 67(2): 845-850.

[27]

Melchior P. The Tide of the Planet Earth, 1978 Oxford: Pergamon Press

[28]

Monnereau M, Calvet M, Margerin L. Lopsided Growth of Earth’s Inner Core. Science, 2010, 328(5981): 1014-1017.

[29]

Niu F, Wen L. Hemispherical Variationsin Seismic Velocity at the Top of the Earth’s Inner Core. Nature, 2001, 410: 1081-1084.

[30]

Olson P, Deguen R. Ecentricity of the Geomagnetic Dipole Caused by Lopsided Inner Core Growth. Nature, 2012, 5: 565-569.

[31]

Roberts P H, Scott S. On Analysis of Secular Variation, 1, A Hydromagnetic Constraint. J. Geomagn. Geoelectr., 1965, 17: 137-151.

[32]

Saito M. Some Problems of Static Deformation of the Earth. J. Phys. Earth., 1974, 22: 123-140.

[33]

Stacey F D. Physics of the Earth, 1991, 3rd ed. New York: Wiley

[34]

Takeuchi H, Saito M. Seismic Surface Waves in the Computational Physics, 1972 New York: Acad. Press, 217-295.

[35]

Taylor J B. The Magneto-Hydrodynamics of a Rotating Fluid and the Earth’s Dynamo Problem. Proc. R. Soc. Lond. A., 1963, 274(1357): 274-283.

[36]

Vamos C, Suciu N. Seismic Hemispheric Asymmetry Induced by Earth’s Inner Core Decentering, 2011

[37]

Wahr J, de Vries D. The Possibility of Lateral Structure inside the Core and Its Implications for Nutation and Earth Tide Observations. Geophys. J. Int., 1989, 99(3): 511-519.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/