Automated rock detection and shape analysis from mars rover imagery and 3D point cloud data

Kaichang Di, Zongyu Yue, Zhaoqin Liu, Shuliang Wang

Journal of Earth Science ›› 2013, Vol. 24 ›› Issue (1) : 125-135.

Journal of Earth Science ›› 2013, Vol. 24 ›› Issue (1) : 125-135. DOI: 10.1007/s12583-013-0316-3
Article

Automated rock detection and shape analysis from mars rover imagery and 3D point cloud data

Author information +
History +

Abstract

A new object-oriented method has been developed for the extraction of Mars rocks from Mars rover data. It is based on a combination of Mars rover imagery and 3D point cloud data. First, Navcam or Pancam images taken by the Mars rovers are segmented into homogeneous objects with a mean-shift algorithm. Then, the objects in the segmented images are classified into small rock candidates, rock shadows, and large objects. Rock shadows and large objects are considered as the regions within which large rocks may exist. In these regions, large rock candidates are extracted through ground-plane fitting with the 3D point cloud data. Small and large rock candidates are combined and postprocessed to obtain the final rock extraction results. The shape properties of the rocks (angularity, circularity, width, height, and width-height ratio) have been calculated for subsequent geological studies.

Keywords

Mars rover / rock extraction / rover image / 3D point cloud data.

Cite this article

Download citation ▾
Kaichang Di, Zongyu Yue, Zhaoqin Liu, Shuliang Wang. Automated rock detection and shape analysis from mars rover imagery and 3D point cloud data. Journal of Earth Science, 2013, 24(1): 125‒135 https://doi.org/10.1007/s12583-013-0316-3

References

Alexander D A, Deen R G, Andres P M, . Processing of Mars Exploration Rover Imagery for Science and Operations Planning. Journal of Geophysical Research—Planets, 2006, 111 E2 E02S02
CrossRef Google scholar
Anderson R C, Castano R, Stough T, . Using Scaled Visual Texture for Autonomous Rock Clustering. Lunar and Planetary Science XXXII, Houston, 2001
Castano R, Anderson R C, Fox J, . Automating Shape Analysis of Rocks on Mars. Lunar and Planetary Science XXXIII, Houston, 2002
Castano R, Judd M, Estlin T, . Current Results from a Rover Science Data Analysis System. IEEE Aerospace Conference, Montana, 2005
Castano R, Estlin T, Anderson R C, . Onboard Autonomous Rover Science. Proceedings of IEEE Aerospace Conference, 2007
Cheng Y Z. Mean Shift, Mode Seeking, and Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799.
CrossRef Google scholar
Comaniciu D, Ramesh V, Meer P. Real-Time Tracking of Non-Rigid Objects Using Mean Shift. Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, 2000, 142-149.
Comaniciu D, Ramesh V, Meer P. The Variable Bandwidth Mean Shift and Data-Driven Scale Selection. Computer Vision, 2001, 1: 438-445.
Comaniciu D, Meer P. Mean Shift: A Robust Approach toward Feature Space Analysis. Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
CrossRef Google scholar
Comaniciu Code for the Edge Detection and Image Segmentation System, 2009
Di K, Xu F, Wang J, . Photogrammetric Processing of Rover Imagery of the 2003 Mars Exploration Rover Mission. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(2): 181-201.
CrossRef Google scholar
Fitzgibbon A, Pilu M, Fisher R B. Direct Least-Square Fitting of Ellipses. Pattern Analysis and Machine Intelligence, 1999, 21(5): 476-480.
CrossRef Google scholar
Fox J, Castano R, Anderson R C. Onboard Autonomous Rock Shape Analysis for Mars Rovers. Proceedings of IEEE Aerospace Conference, Montana, 2002, 2036-2052.
Fukanaga K, Hostetler L D. The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition. IEEE Transactions on Information Theory, 1975, 21(1): 32-40.
CrossRef Google scholar
Golombek M P, Huertas A, Marlow J, . Size-Frequency Distributions of Rocks on the Northern Plains of Mars with Special Reference to Phoenix Landing Surfaces. Journal of Geophysical Research—Planets, 2008, 13 E00A09 32.
Gor V, Castano R, Manduchi R, . Autonomous Rock Detection for Mars Terrain. Space 2001, American Institute of Aeronautics and Astronautics, Albuquerque, NM, USA, 2001
Gulick V C, Morris R L, Ruzon M A, . Autonomous Image Analyses during the 1999 Marsokhod Rover Field Test. Journal of Geophysical Research, 2001, 106(E4): 7745-7763.
CrossRef Google scholar
Hong Y, Yi J, Zhao D. Improved Mean Shift Segmentation Approach for Natural Images. Applied Mathematics and Computation, 2007, 185(2): 940-952.
CrossRef Google scholar
Li R, Squyres S W, Arvidson R E, . Initial Results of Rover Localization and Topographic Mapping for the 2003 Mars Exploration Rover Mission. Photogrammetric Engineering & Remote Sensing, 2005, 71(10): 1129-1142.
Li R, Di K, Howard A B, . Rock Modeling and Matching for Autonomous Long-Range Mars Rover Localization. Journal of Field Robotics, 2007, 24(3): 187-203.
CrossRef Google scholar
Manduchi R, Pollara F, Dolinar S, . Onboard Science Processing and Buffer Management for Intelligent Deep Space Communications. Proceedings of IEEE Aerospace Conference Big Sky, Montana, USA, 2000
Ozertem U, Erdogmus D, Jenssen R. Mean Shift Spectral Clustering. Pattern Recognition, 2008, 41(6): 1924-1938.
CrossRef Google scholar
Peng N S, Yang J, Liu Z, . Automatic Selection of Kernel-Bandwidth for Mean-Shift Object Tracking. Journal of Software, 2005, 16(9): 1542-1550.
CrossRef Google scholar
Song Y H, Shan J. A Framework for Automated Rock Segmentation of the Mars Exploration Rover Imagery. Proceedings of ASPRS 2006 Annual Conference, Reno, Nevada, USA, 2006
Song Y H, Shan J. Automated Rock Segmentation for Mars Exploration Rover Imagery. Lunar and Planetary Science Conference XXXIX, Houston, USA, 2008
Thompson D R, Niekum S, Smith T, . Automatic Detection and Classification of Features of Geologic Interest. Proceedings of IEEE Aerospace Conference, Montana, USA, 2005
Thompson D R, Smith T, Wettergreen D. Data Mining during Rover Traverse: From Images to Geologic Signatures. Proceedings of 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space, USA, 2005
Thompson D R, Castano R. Performance Comparison of Rock Detection Algorithms for Autonomous Planetary Geology. Aerospace, IEEE, USA, IEEEAC Paper No. 1251, 2007
Wagstaff K L, Castano R, Dolinar S, . Science-Based Region-of-Interest Image Compression. Proceedings of 35th Lunar and Planetary Science Conference, League City, Texas, USA, 2004
Wen Z Q, Cai Z X. Convergence Analysis of Mean Shift Algorithm. Journal of Software, 2007, 18(2): 205-212.
CrossRef Google scholar
Wu K L, Yang M S. Mean Shift-Based Clustering. Pattern Recognition, 2007, 40(11): 3035-3052.
CrossRef Google scholar
Xu C Y, Prince J L. Gradient Vector Flow: A New External Force for Snakes. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997, 66-71.

Accesses

Citations

Detail

Sections
Recommended

/