Petromagnetic properties of granulite-facies rocks from the northern North China Craton: Implications for magnetic and evolution of the continental lower crust

Qingsheng Liu , Hongcai Wang , Jianping Zheng , Qingli Zeng , Qingsong Liu

Journal of Earth Science ›› 2013, Vol. 24 ›› Issue (1) : 12 -28.

PDF
Journal of Earth Science ›› 2013, Vol. 24 ›› Issue (1) : 12 -28. DOI: 10.1007/s12583-013-0314-5
Article

Petromagnetic properties of granulite-facies rocks from the northern North China Craton: Implications for magnetic and evolution of the continental lower crust

Author information +
History +
PDF

Abstract

This paper studies magnetic properties and composition of granulite-facies rocks of both the Neogene and Archean continental lower crust in the Neogene xenolith-bearing Hannuoba(汉诺坝) alkaline basalt and the exposed lower crustal section in the Archean Huai’an(淮安) terrain (Wayaokou (瓦窑口)-Manjinggou(蔓菁沟 profile), the northern North China Craton. It provides a unique opportunity for a comparative study of magnetic properties and composition of both the Archean and Neogene continental lower crust. We measure magnetic parameters (susceptibility κ and magnetic hysteresis parameters, such as saturation magnetization J s, saturation isothermal remanent magnetization J rs, and intrinsic coercivity H c) of eleven Hannuoba lower crustal xenoliths and nine terrain granulites from the Archean Huai’an terrain. Results indicate that the average values of κ, J s and J rs of Archean granulites are 4 122×10−6 SI, 523.1 A/m and 74.9 A/m, respectively, which are generally higher than those of granulite-facies xenoliths (1 657×10−6 SI, 163.9 A/m and 41.9 A/m, respectively). These two types of granulites contain ilmenite, (titano) magnetite, minor hematite and some “magnetic silicates” (clinopyroxene, plagioclase and biotite). The Mg-rich ilmenite in granulite-facies xenolith is relatively higher than that in terrain granulites. We observe a more evolved character as higher magnetic as well as lower Sr/Nd, Cr/Nd, Ni/Nd, Co/Nd and V/Nd ratios in terrain granulites. These differences in magnetic characteristics reflect their different origins and evolutions. The high magnetization of granulites in the Huai’an terrain represents magnetic properties of the Archean continental lower crust, and low magnetization of granulite-facies xenoliths represents magnetic properties of the Cenozoic lower crusts in the northern North China Craton.

Keywords

rock and mineral magnetism / magnetic mineralogy and petrology / metamorphic petrology / North China Craton

Cite this article

Download citation ▾
Qingsheng Liu, Hongcai Wang, Jianping Zheng, Qingli Zeng, Qingsong Liu. Petromagnetic properties of granulite-facies rocks from the northern North China Craton: Implications for magnetic and evolution of the continental lower crust. Journal of Earth Science, 2013, 24(1): 12-28 DOI:10.1007/s12583-013-0314-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Belluso E, Biino G, Lanza R. New Data on the Rock Magnetism in the Ivrea-Verbano Zone (Northern Italy) and Its Relationships to the Magnetic Anomalies. Tectonophysics, 1990, 182(1–2): 79-89.

[2]

Bohlen S R, Mezger K. Origin of Granulite Terranes and the Formation of the Lowermost Continental Crust. Science, 1989, 244(4902): 326-329.

[3]

Carmichael R S. Handbook of Physical Properties of Rocks, 1984, II 246.

[4]

Davis K E. Magnetite Rods in Plagioclase as the Primary Carrier of Stable NRM in Ocean Floor Gabbros. Earth. Planet. Sci. Lett., 1981, 55: 190-198.

[5]

Dunlop D J, Őzdemir, Rancourt D G. Magnetism of Biotite Crystals. Earth Plant. Sci. Lett., 2006, 243(3–4): 805-819.

[6]

Dunlop D J, Ozdemir O, Costanzo-Alvarez V. Magnetic Properties of Rocks of the Kapuskasing Uplift (Ontario, Canada) and Origin of Long-Wavelength Magnetic Anomalies. Geophys. J. Int., 2010, 183(2): 645-658.

[7]

Feinberg J M, Scott G R, Renne P R, . Exsolved Magnetite Inclusions in Silicates: Features Determining Their Remanence Behavior. Geology, 2005, 33(6): 513-516.

[8]

Frost B R, Shive P N. Magnetic Mineralogy of the Lower Continental Crust. J. Geophys. Res., 1986, 91(B6): 6513-6521.

[9]

Frost B R. Magnetic Petrology: Factors that Control the Occurrence of Magnetite in Crustal Rocks. Rev. Mineral., 1991, 25: 489-509.

[10]

Gao S, Zhang B R, Jin Z M, . How Mafic is the Lower Continental Crust?. Earth Planet. Sci. Lett., 1998, 161(1–4): 101-117.

[11]

Gao S, Kern H, Liu Y S, . Measured and Calculated Seismic Velocities and Densities for Granulites from Xenolith Occurrences and Adjacent Exposed Lower Crustal Sections: A Comparative from the North China Craton. J. Geophys. Res., 2000, 105(B8): 18965-18976.

[12]

Gaspararini P, Mantovani M S M, Corrado G, . Depth of Curie Temperature in Continental Shields: A Compositional Boundary?. Nature, 1979, 278: 845-846.

[13]

Geophys. Res. Lett., 2008, 35 10

[14]

Haggerty S E. The Aeromagnetic Mineralogy of Igneous Rocks. Can. J. Earth Sci., 1979, 16: 1281-1293.

[15]

Haggerty S E, Toft P B. Native Iron in the Continental Lower Crust: Petrological and Geophysical Implications. Science, 1985, 229: 647-649.

[16]

Holbrook W S, Mooney W D, Christensen N I. Fountain D M, Arculus R, Kay R. The Seismic Velocity Structure of the Deep Continental Crust. Lower Continental Crust, 1992 Amsterdam: Elsevier, 1-43.

[17]

Kelso P R, Banerjeea S K, Eyssier C. Rock Magnetic Properties of the Amnta Block, Central Australia, and Their Implication for the Interpretation of Long-Wavelength Magnetic Anomalies. J. Geophys. Res., 1993, 98(B9): 15987-15999.

[18]

Kern H, Gao S, Liu Q S. Seismic Properties and Densities of Middle and Lower Crustal Rocks Exposed along the North China Geoscience Transect. Earth Planet. Sci. Lett., 1996, 139(3-4): 439-455.

[19]

Kern H, Jin Z M, Gao S, . Physical Properties of Ultrahigh-Pressure Metamorphic Rocks from the Sulu Terrain, Eastern Central China: Implications for the Seismic Structure at the Donghai (CCSD) Drilling Site. Tectonophysics, 2002, 354(3–4): 315-330.

[20]

Kletetschka G, Stout J H. The Origin of Magnetic Anomalies in Lower Crustal Rocks, Labrador. Geophys. Res. Lett., 1998, 25(2): 199-202.

[21]

Lebas M J, Streckeisen A L. The IUGS Systematics of Igneous Rocks. J. Geol. Soc., London, 1991, 148: 825-833.

[22]

Liu D Y, Nutman A P, Compston W, . Remnants of >3 800 Ma Crust in the Chinese Part of the Sino-Korean Craton. Geology, 1992, 20(4): 339-342.

[23]

Liu Q S, Gao S. Geophysical Properties of the Lower Crustal Granulites from the Qinling Orogenic Belt, China. Tectonophysics, 1992, 204(3–4): 401-408.

[24]

Liu Q S, Gao S, Liu Y S. Magnetic Structure of the Continental Crust as Revealed by the Wutai-Jinjing Crustal Cross-Section in the North China Craton. J. Geodys., 2000, 29: 1-13.

[25]

Liu Q S, Gao S, Xu Q D. Magnetic Structure of the Dengfeng-Lushan Crustal Cross-Section, Henan. Sci. China (Series B), 1994, 37(8): 911-1000.

[26]

Liu Q S, Gao S, Xu Q D, . Magnetic Petrology of Archean Amphibolite-Granulite Facies Rocks from Yangtze Craton, South China. Acta Geophys. Sin., 1996, 39(Suppl.): 150-157.

[27]

Liu Q S, Liu Q S, Zhang Z M, . Magnetic Properties of Ultrahigh-Pressure Eclogites Controlled by Retrograde Metamorphism: A Case Study from the ZK 703 Drillhole in Donghai, Eastern China. Phys. Earth Planet. Inter., 2007, 160(3–4): 181-191.

[28]

Liu Q S, Liu Q S, Liu Y S, . Magnetic Study of Mafic Granulite Xenoliths from the Hannuoba Basalt, North China. Geochem. Geophys. Geosyst., 2008, 9 16.

[29]

Liu, Q. S., Liu, Q. S., Yang, T., et al., 2009. Magnetic Study of the UHP Eclogites from the Chinese Continental Scientific Drilling (CCSD) Project. J. Geophys. Res., 114 doi:10.1029/2008 JB005917

[30]

Liu Q. S., Zeng Q. L., Zheng J. P., . Magnetic Properties of Serpentinized Garnet Peridotites from the CCSD Main Hole in the Sulu Ultrahigh-Pressure Metamorphic Belt, Eastern China. J. Geophys. Res., 2010, 115 10.

[31]

Liu Y S. Geochemistry of Lower Crustal Xenoliths from Hannuoba Basalt: Geodynamic Implications: [Dissertation], 1999 Wuhan: China University of Geosciences

[32]

Liu Y S, Gao S, Jin S Y, . Geochemistry and Petrogenesis of Lower Crustal Xenoliths from Hannuoba, North China: Implications for the Continental Lower Crustal Composition and Evolution at Convergent Margin. Geochim. Cosmochim. Acta, 2001, 65(15): 2589-2604.

[33]

McEnroe S A, Harrison R J, Robinson P, . Effect of Fine-Scale Microstructure in Titanohematite on the Acquisition and Stability of Natural Remanent Magnetization in Granulite Facies Metamorphic Rocks, Southwest Sweden: Implications for Crustal Magnetism. J. Geophys. Res., 2001, 106(B12): 30523-30546.

[34]

McEnroe S A, Langenhorst F, Robinson P, . What is Magnetic in the Lower Crust?. Earth Planet. Sci. Lett., 2004, 226(1–2): 175-192.

[35]

Murthy G S, Pätzold R, Brown C. Source of Stable Remanence in Certain Intrusive Rocks. Phy. Earth Planet. Inter., 1981, 26(1—2): 72-80.

[36]

Olesen O, Henkel H, Kaada K, . Petrophysical Properties of a Prograde Amphibolite-Granulite Facies Transition Zone at Sigerfjors, Vesterale, Northern Norway. Tectonophysics, 1997, 192: 33-39.

[37]

Pechersky D M, Genshaft Y S. Petromagnetism of the Continental Crust: A Summary of 20th Century Research. Phys. Solid Earth, 2002, 38: 4-36.

[38]

Peters C, Dekkers M J. Selected Room Temperature Magnetic Parameters as a Function of Mineralogy, Concentration and Grain Size. Phys. Chem. Earth, 2003, 28(16–19): 659-667.

[39]

Peters C, Thompson R. Magnetic Identification of Selected Natural Iron Oxides and Sulphides. J. Magn. Magn. Mater., 1998, 183(3): 365-374.

[40]

Piper J D A, Mallik S B, Bandyopadhyay G, . Palaeomagnetic and Rock Magnetic Study of a Deeply Exposed Continental Section in the Charnockite Belt of Southern India: Implications to Crustal Magnetization and Palaeoproterozoic Continental Nuclei. Precambrian Res., 2003, 121(3–4): 185-219.

[41]

Ramachandran C. Metamorphism and Magnetic Susceptibilities in South Indian Granulite Terrain. J. Geol. Soc. India, 1990, 35(4): 395-403.

[42]

Renne P R, Scott G R, Glen J M G, . Oriented Inclusions of Magnetite in Clinopyroxene: Source of Stable Remanet Magnetization in Gabbros of the Messum Complx, Namibia. Geochem., Geophy., Geosy., 2002, 3.

[43]

Roberts S J, Ruiz J. Geochemistry of Exposed Granulite Facies Terrains and Lower Crustal Xenoliths in Mexico. J. Geophy. Res., 1989, 94(B6): 7961-7974.

[44]

Rudnick R L. Fountain D M, Arculus R, Kay R W. Xenoliths-Samples of the Lower Continental Crust. Continental Lower Crust, 1992 Amsterdam: Elsevier, 269-316.

[45]

Rudnick R L. Making Continental Crust. Nature, 1995, 378(6557): 571-578.

[46]

Rudnick R L, Fountain D M. Nature and Composition of the Continental Crust: A Lower Crustal Perspective. Rev. Geophys., 1995, 33(3): 267-309.

[47]

Schlinger C M. Magnetization of Lower Crust and Interpretation of Regional Magnetic Anomalies: Example from Lofoten and Vesteralen, Norway. J. Geophys. Res., 1985, 90(NB13): 1484-1504.

[48]

Schlinger C M, Khan M J, Wasilewski P. Rock Magnetism of the Kohistan Island Arc, Pakistan. Geol. Bull. Univ., 1989, 22: 83-101.

[49]

Shive P N, Blakely R J, Frost B R, . Fountain D M, Arculus R, Kay R W, . Magnetic Properties of the Lower Continental Crust. Continental Lower Crust, 1992 Amsterdam: Elsevier, 145-178.

[50]

Shive P N, Fountain D M. Magnetic Mineralogy in an Archean Crustal Cross Section: Implications for Crustal Magnetization. J. Geophys. Res., 1988, 93(B10): 12177-12186.

[51]

Tarling, D. H., 1983. Palaeomagnetism: Principles and Applications in Geology, Geophysics, and Archaeology. Chapman and Hall Ltd. 50

[52]

Warner R D, Wasilewski P J. Magnetic Petrology of Lower Crust and Upper Mantle Xenoliths from McMardo Sound, Antarctica. Tectonophysics, 1995, 249(1–2): 69-92.

[53]

Wasilewski P J, Fountain D M. The Ivrea Zone as a Model for the Distribution of Magnetization in the Continental Crust. Geophys. Res. Lett., 1982, 9(4): 333-336.

[54]

Wasilewski P J, Mayhew M A. Crustal Xenoliths Magnetic Properties and Long Wavelength Anomaly Source Requirements. Geophys. Res. Lett., 1982, 9(4): 329-332.

[55]

Wasilewski P J, Warner R D. Magnetic Petrology of Deep Crustal Rocks-Ivrea Zone, Italy. Earth Planet. Sci. Lett., 1988, 87(3): 347-361.

[56]

Wedepohl K H. The Composition of the Continental Crust. Geochim. Cosmochim. Acta, 1991, 59(7): 1217-1232.

[57]

Williams M C, Shive P N, Fountain D M, . Magnetic Properties of Exposed Deep Crustal Rocks from the Superior Province of Manitoba. Earth Plant. Sci. Lett., 1985, 76(1–2): 176-184.

[58]

Zhang J S, Piper J D A. Magnetic Fabric and Post-Orogenic Uplift and Cooling Magnetizations in a Precambrian Granulite Terrain: The Datong-Huai’an Region of the North China Shield. Tectonophysics, 1994, 234(3): 227-246.

[59]

Zhang J S, Lao Q Y, Li Y. Tectonic Implication of Aeromagnetic Anomaly and Evolution of Huabei-South Tarim-Yangtze Superlandmass. Earth Sci. Front., 1999, 6: 379-390.

[60]

Zhang X, Liu M, Zhao L. Crustal Magnetic Structure and Earthquakes in North China. Earthquake, 2000, 20: 50-56.

[61]

Zheng J P, Griffin W L, Qi L, . Age and Composition of Granulite and Pyroxenite Xenoliths in Hannuoba Basalts Reflect Paleogene Underplating beneath the North China Craton. Chem. Geol., 2009, 264(1–4): 266-280.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/