Temperature of prograde metamorphism, decompressional partial melting and subsequent melt fractional crystallization in the Weihai migmatitic gneisses, Sulu UHP terrane: Constraints from Ti-in-zircon thermometer

Haijin Xu , Kai Ye , Junfeng Zhang

Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (6) : 813 -827.

PDF
Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (6) : 813 -827. DOI: 10.1007/s12583-012-0303-0
Article

Temperature of prograde metamorphism, decompressional partial melting and subsequent melt fractional crystallization in the Weihai migmatitic gneisses, Sulu UHP terrane: Constraints from Ti-in-zircon thermometer

Author information +
History +
PDF

Abstract

In order to constrain temperature during subduction and subsequent exhumation of felsic continental crust, we carried out a Ti-in-zircon thermometer coupled with zircon internal structure and U-Pb age on migmatitic gneisses from the Weihai (威海) region in the Sulu (苏鲁) ultra-high pressure (UHP) metamorphic terrane, eastern China. The Weihai migmatitic gneisses are composed of intercalated compositional layers of melanosome and plagioclase (Pl)-rich leucosome and K-feldspar (Kfs)-rich pegmatite veins. Four stages of zircon growth were recognized in the Weihai migmatitic gneisses. They successively recorded informations of protolith, prograde metamorphism, decompressional partial melting during early stage exhumation and subsequent fractional crystallization of primary melt during later stage cooling exhumation. The inherited cores in zircon from the melanosome and the Pl-rich leucosome suggest that the protolith of the migmatitic gneiss is Mid-Neoproterozoic (∼780 Ma) magmatic rock. Metamorphic zircons with concordant ages ranging from 243 to 256 Ma occur as overgrowth mantles on the protolith magmatic zircon cores. The estimated growth temperatures (625–717 °C) of the metamorphic zircons have a negative correlation with their ages, indicating a progressive metamorphism in HP eclogite-facies condition during subduction. Zircon recrystallized rims (228±2 Ma) in the Pl-rich leucosome layers provide the lower limit of the decompresssional partial melting time during exhumation. The ages from 228±2 to 219±2 Ma recorded in the Pl-rich leucosome and the Kfs-rich pegmatite vein, respectively, suggest the duration of the fractional crystallization of primary melt during exhumation. The calculated growth temperatures of the zircon rims from the Pl-rich leucosome range from 858 to 739 °C, and the temperatures of new growth zircon grains (219±2 Ma) in Kfs-rich vein are between 769 and 529 °C. The estimated temper atures have a positive correlation with ages from the Pl-rich leucosome to the Kfs-rich pegmatite vein, strongly indicating that a process of fractional crystallization of the partial melt during exhumation.

Keywords

Ti-in-zircon thermometer / prograde metamorphism / decompressional partial melting / fractional crystallization / migmatitic gneiss / Sulu UHP metamorphic terrane

Cite this article

Download citation ▾
Haijin Xu, Kai Ye, Junfeng Zhang. Temperature of prograde metamorphism, decompressional partial melting and subsequent melt fractional crystallization in the Weihai migmatitic gneisses, Sulu UHP terrane: Constraints from Ti-in-zircon thermometer. Journal of Earth Science, 2012, 23(6): 813-827 DOI:10.1007/s12583-012-0303-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Auzanneau E., Schmidt M. W. Experimental Evidence of Decompression Melting during Exhumation of Subducted Continental Crust. Contributions to Mineralogy and Petrology, 2006, 152: 125-148.

[2]

Ayers J. C., Dunkle S., Gao S., . Constraints on Timing of Peak and Retrograde Metamorphism in the Dabie Shan Ultrahigh-Pressure Metamorphic Belt, East-Central China, Using U-Th-Pb Dating of Zircon and Monazite. Chemical Geology, 2002, 186: 315-331.

[3]

Banno S., Enami M., Hirajima T., . Decompression P-T Path of Coesite Eclogite to Granulite from Weihai, Eastern China. Lithos, 2000, 52: 97-108.

[4]

Ferry J. M., Watson E. B. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 2007, 154: 429-437.

[5]

Harley S. L. Refining the P-T Records of UHT Crustal Metamorphism. Journal of Metamorphic Geology, 2008, 26(2): 125-154.

[6]

Hermann J. Experimental Constraints on Phase Relations in Subducted Continental Crust. Contributions to Mineralogy and Petrology, 2002, 143: 219-235.

[7]

Hermann J., Spandler C., Hack A., . Aqueous Fluids and Hydrous Melts in High-Pressure and Ultra-High Pressure Rocks: Implications for Element Transfer in Subduction Zones. Lithos, 2006, 92: 399-417.

[8]

Hu Z. C., Gao S., Liu Y. S., . Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 2008, 23: 1093-1101.

[9]

Huang J., Zheng Y. F., Zhao Z. F., . Melting of Subducted Continent: Element and Isotopic Evidence for a Genetic Relationship between Neoproterozoic and Mesozoic Granitoids in the Sulu Orogen. Chemical Geology, 2006, 229: 227-256.

[10]

Kelsey D. E. On Ultrahigh-Temperature Crustal Metamorphism. Gondwana Research, 2008, 13(1): 1-29.

[11]

Leite C. M. M., Barbosa J. S. F., Goncalves P., . Petrological Evolution of Silica-Undersaturated Sapphirine-Bearing Granulite in the Paleoproterozoic Salvador-Curá Belt, Bahia, Brazil. Gondwana Research, 2009, 15(1): 49-70.

[12]

Li S. G., Jagoutz E., Chen Y. Z., . Sm-Nd and Rb-Sr Isotopic Chronology and Cooling History of Ultra-High Pressure Metamorphic Rocks and Their Country Rocks at Shuanghe in the Dabie Mountains, Central China. Geochimica et Cosmochimica Acta, 2000, 64: 1077-1093.

[13]

Liou J. G., Ernst W. G., Zhang R. Y., . Ultrahigh-Pressure Minerals and Metamorphic Terranes—The View from China. Journal of Asian Earth Sciences, 2009, 35(3–4): 199-231.

[14]

Litvinovsky B. A., Steele I. M., Wickham S. M. Silicic Magma Formation in Overthickened Crust: Melting of Charnockite and Leucogranite at 15, 20 and 25 kbar. Journal of Petrology, 2000, 41(5): 717-737.

[15]

Liu F. L., Gerdes A., Liou J. G., . SHRIMP U-Pb Zircon Dating from Sulu-Dabie Dolomitic Marble, South China: Constraints on Prograde, Ultrahigh-Pressure and Retrograde Metamorphic Ages. Journal of Metamorphic Geology, 2006, 24: 569-589.

[16]

Liu F. L., Gerdes A., Zeng L. S., . SHRIMP U-Pb Dating, Trace Elements and the Lu-Hf Isotope System of Coesite-Bearing Zircon from Amphibolite in the SW Sulu UHP Terrane, Eastern China. Geochimica et Cosmochimica Acta, 2008, 72: 2973-3000.

[17]

Liu F. L., Liou J. G., Xu Z. Q. U-Pb SHRIMP Ages Recorded in the Coesite-Bearing Zircon Domains of Paragneisses in the Southwestern Sulu Terrane, Eastern China: New Interpretation. American Mineralogist, 2005, 90: 790-800.

[18]

Liu F. L., Robinson P. T., Gerdes A., . Zircon U-Pb Ages, REE Concentrations and Hf Isotope Compositions of Granitic Leucosome and Pegmatite from the North Sulu UHP Terrane in China: Constraints on the Timing and Nature of Partial Melting. Lithos, 2010, 117: 247-268.

[19]

Liu F. L., Robinson P. T., Liu P. H. Multiple Partial Melting Events in the Sulu UHP Terrane: Zircon U-Pb Dating of Granitic Leucosomes within Amphibolite and Gneiss. Journal of Metamorphic Geology, 2012, 30: 887-906.

[20]

Liu F. L., Xu Z. Q., Liou J. G., . SHRIMP U-Pb Ages of Ultrahigh-Pressure and Retrograde Metamorphism of Gneisses, South-Western Sulu Terrane, Eastern China. Journal of Metamorphic Geology, 2004, 22: 315-326.

[21]

Liu Y. S., Hu Z. C., Gao S., . In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 2008, 257: 34-43.

[22]

Liu Y. S., Gao S., Hu Z. C., . Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 2010, 51: 537-571.

[23]

Ludwig K. R. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel, 2003 Berkeley: Berkeley Geochronology Center

[24]

Nakamura D., Hirajima T. Granulite-Facies Overprinting of Ultrahigh-Pressure Metamorphic Rocks, Northeastern Sulu Region, Eastern China. Journal of Petrology, 2000, 4: 563-582.

[25]

Patiño Douce A. E. Vapor-Absent Melting of Tonalite at 15–32 kbar. Journal of Petrology, 2005, 46(2): 275-290.

[26]

Patiño Douce A. E., Beard J. S. Dehydration-Melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar. Journal of Petrology, 1995, 36: 707-738.

[27]

Rubatto D. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 2002, 184: 123-138.

[28]

Santosh M., Tsunogae T., Li J. H., . Discovery of Sapphirine-Bearing Mg-Al Granulites in the North China Craton: Implications for Paleoproterozoic Ultrahigh Temperature Metamorphism. Gondwana Research, 2007, 11(3): 263-285.

[29]

Shimpo M., Tsunogae T., Santosh M. First Report of Garnet-Corundum Rocks from Southern India: Implications for Prograde High-Pressure (Eclogite Facies?) Metamorphism. Earth and Planetary Science Letters, 2006, 242(1–2): 111-129.

[30]

Skjerlie K. P., Johnston A. D. Vapour-Absent Melting from 10 to 20 kbar of Crustal Rocks that Contain Multiple Hydrous Phases: Implications for Anatexis in the Deep to very Deep Continental Crust and Active Continental Margins. Journal of Petrology, 1996, 37(3): 661-691.

[31]

Tang J., Zheng Y. F., Wu Y. B., . Zircon U-Pb Age and Geochemical Constraints on the Tectonic Affinity of the Jiaodong Terrane in the Sulu Orogen, China. Precambrian Research, 2008, 161: 389-418.

[32]

Tsunogae T., Santosh M. Spinel-Sapphirine-Quartz Bearing Composite Inclusion within Garnet from an Ultrahigh-Temperature Pelitic Granulite: Implications for Metamorphic History and P-T Path. Lithos, 2006, 92: 524-536.

[33]

Wallis S., Tsuboi M., Suzuki K., . Role of Partial Melting in the Evolution of the Sulu (Eastern China) Ultrahigh-Pressure Terrane. Geology, 2005, 33(2): 129-132.

[34]

Wang Q., Ishiwatari A., Zhao Z. Y., . Coesite-Bearing Granulite Retrograded from Eclogite in Weihai, Eastern China. European Journal of Mineralogy, 1993, 5: 141-151.

[35]

Watson E. B., Harrison T. M. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 1983, 64: 295-304.

[36]

Watson E. B., Wark D. A., Thomas J. B. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 2006, 151: 413-433.

[37]

Wawrzenitz N., Romer R. L., Oberhänsli R., . Dating of Subduction and Differential Exhumation of UHP Rocks from the Central Dabie Complex (E-China): Constraints from Microfabrics, Rb-Sr and U-Pb Isotope Systems. Lithos, 2006, 89: 174-201.

[38]

Wiedenbeck M., Alle P., Corfu F., . Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 1995, 19: 1-23.

[39]

Wu Y. B., Zheng Y. F., Zhao Z. F., . U-Pb, Hf and O Isotope Evidence for Two Episodes of Fluid-Assisted Zircon Growth in Marble-Hosted Eclogites from the Dabie Orogen. Geochimica et Cosmochimica Acta, 2006, 70: 3743-3761.

[40]

Xu, H. J., Ye, K., Song, Y. R., et al., 2012. Prograde Metamorphism, Decompressional Partial Melting and Subsequent Melt Crystallization and Segregation in the Weihai Migmatitic Gneisses, Sulu UHPM Terrane, Eastern China. Chemical Geology, Revised

[41]

Yang J. S., Wooden J. L., Wu C. L. SHRIMP U-Pb Dating of Coesite-Bearing Zircon from the Ultrahigh-Pressure Metamorphic Rocks, Sulu Terrane, East China. Journal of Metamorphic Geology, 2003, 21: 551-560.

[42]

Ye K., Cong B. L., Ye D. N. The Possible Subduction of Continental Material to Depths Greater than 200 km. Nature, 2000, 407: 734-706.

[43]

Ye K., Yao Y. P., Katayama I., . Large Areal Extent of Ultrahigh-Pressure Metamorphism in the Sulu Ultrahigh-Pressure Terrane of East China: New Implications from Coesite and Omphacite Inclusions in Zircon of Granitic Gneiss. Lithos, 2000, 52: 157-164.

[44]

Zhang Z. M., Shen K., Wang J. L., . Petrological and Geochronological Constraints on the Formation, Subduction and Exhumation of the Continental Crust in the Southern Sulu Orogen, Eastern-Central China. Tectonophysics, 2009, 475(2): 291-307.

[45]

Zheng Y. F. A Perspective View on Ultrahigh-Pressure Metamorphism and Continental Collision in the Dabie-Sulu Orogenic Belt. Chinese Science Bulletin, 2008, 53(20): 3081-3104.

[46]

Zheng Y. F., Fu B., Gong B., . Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China, Implications for Geodynamics and Fluid Regime. Earth-Science Reviews, 2003, 62: 105-161.

[47]

Zheng Y. F., Wu Y. B., Zhao Z. F., . Metamorphic Effect on Zircon Lu-Hf and U-Pb Isotope Systems in Ultrahigh-Pressure Eclogite-Facies Metagranite and Metabasite. Earth and Planetary Science Letters, 2005, 240: 378-400.

[48]

Zong K. Q., Liu Y. S., Hu Z. C., . Melting-Induced Fluid Flow during Exhumation of Gneisses of the Sulu Ultrahigh-Pressure Terrane. Lithos, 2010, 120: 490-510.

[49]

Zong K. Q., Liu Y. S., Gao C. Q., . Garnet-Spinel-Corundum-Quartz-Bearing Titanohematite Veins in Eclogite from the Sulu Ultrahigh-Pressure Terrane: Imprint of a Short-Lived, High-Temperature Metamorphic Stage. Journal of Asian Earth Sciences, 2011, 42: 704-714.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/