On the role of dual active margin collision for exhuming the world’s largest ultrahigh pressure metamorphic belt

Lu Wang , Timothy M. Kusky , M. Santosh

Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (6) : 802 -812.

PDF
Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (6) : 802 -812. DOI: 10.1007/s12583-012-0292-z
Article

On the role of dual active margin collision for exhuming the world’s largest ultrahigh pressure metamorphic belt

Author information +
History +
PDF

Abstract

A wide variety of tectonic models have been invoked to explain the exhumation of the world’s largest ultrahigh pressure (UHP) orogenic belt, the Qinling (秦岭)-Dabieshan (大别山)-Sulu (苏鲁) belt in China, and its correlatives in Korea. Most of these models assume that the orogen contains one main collisional suture between the North and South China cratons that collided in the Mesozoic. New field data reveal that this model is too simplistic, and that the collision involved an additional microplate, which initially rifted off the Yangtze craton. This continental microplate was partially subducted beneath an active margin on the North China craton, and subsequently an additional active Andean-style margin developed on the southern margin of the Qinling microplate after collision, leaving the near-vertical microplate wedged between the two thickened and thermally softened margins. The thermo-mechanical environment of collision thus left a cold, thick, and buoyant microplate wedged between two easily deformed margins, which acted as power-law creep channels, accommodating rapid buoyancy-driven rise of a 2 000 km long wedge of the subducted microplate, which became intimately involved with the collisional process. An additional segment of the northern Yangtze craton was subducted to >100 km, and formed a separate wedge that rose alongside the thermally softened margin of the Qinling microcontinent, and was bordered on the south by the recently thermally-softened rift zone where the Qinling microcontinent broke off the Yangtze craton between Late Devonian and Permian times. Recognizing the dual active margins in Qinling-Dabieshan-Sulu orogen and the thermally-softened power-law creep channels sheds new light on understanding exhumation of the world’s largest ultrahigh pressure belt. We propose that this model is generally applicable to other UHP belts worldwide.

Keywords

ultrahigh-pressure metamorphic belt / plate tectonics / subduction / collision / exhumation / Qinling-Dabieshan-Sulu belt

Cite this article

Download citation ▾
Lu Wang, Timothy M. Kusky, M. Santosh. On the role of dual active margin collision for exhuming the world’s largest ultrahigh pressure metamorphic belt. Journal of Earth Science, 2012, 23(6): 802-812 DOI:10.1007/s12583-012-0292-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beaumont C., Jamieson R. A., Butler J. P., . Crustal Structure: A Key Constraint on the Mechanism of Ultra-High-Pressure Rock Exhumation. Earth and Planetary Science Letters, 2009, 287: 116-129.

[2]

Brown M.. Metamorphic Conditions in Orogenic Belts: A Record of Secular Change. International Geology Review, 2007, 49(3): 193-234.

[3]

Brueckner H. K., van Roermund H. L. M.. Dunk Tectonics: A Multiple Subduction//Eduction Model for the Evolution of the Scandinavian Caledonides. Tectonics, 2004, 23 2 TC2004

[4]

Cheng H., Chen D. G., Cheng W. J., . Garnet Chemical Zoning in Low-T Eclogite: Evidence for Fast Exhumation. Geochim., 2003, 32: 81-85.

[5]

Culshaw N., Ketchum J., Barr S.. Structural Evolution of the Makkovik Province, Labrador, Canada: Tectonic Processes during 200 Myr at a Paleoproterozoic Active Margin. Tectonics, 2000, 19(5): 961-977.

[6]

de Meer S., Drury M. R., de Bresser J. H. P., . Deformation Mechanisms, Rheology and Tectonics: Current Status and Future Perspectives. Geological Society, London, Special Publications, 2002, 200: 1-27.

[7]

Ernst W. G.. Speculations on Evolution of the Terrestrial Lithosphere-Asthenosphere System—Plumes and Plates. Gondwana Research, 2007, 11(1-2): 38-49.

[8]

Faure M., Lin W., Scharer U., . Continental Subduction and Exhumation of UHP Rocks: Structural and Geochronological Insights from the Dabie (East China). Lithos, 2003, 70(3/4): 213-241.

[9]

Hacker B. R., Ratschbacher L., Webb L., . Exhumation of Ultrahigh-Pressure Continental Crust in East Central China: Late Triassic-Early Jurassic Tectonic Unroofing. Journal of Geophysical Research, 2000, 105(B6): 13339-13364.

[10]

Hacker B. R., Wallis S. R., McWilliams M. O., . 40Ar/39Ar Constraints on the Tectonic History and Architecture of the Ultrahigh-Pressure Sulu Orogen. Journal of Metamorphic Geology, 2009, 27(9): 827-844.

[11]

Hacker B. R., Wallis S. R., Ratschbacher L., . High Temperature Geochronology Constraints on the Tectonic History and Architecture of the Ultrahigh-Pressure Dabie-Sulu Orogen. Tectonics, 2006, 25 5 TC5006

[12]

Hacker B. R., Wang Q. C.. Ar/Ar Geochronology of Ultrahigh-Pressure Metamorphism in Central China. Tectonics, 1995, 14(4): 994-1006.

[13]

Jiang C. F., Wang Z. Q., Li J. Y.. Tectonics of Opening and Closing of the Central Orogenic Belt in China, 2000, Beijing: Geological Publishing House 1 145

[14]

Kusky, T. M., Windley, B. F., Zhai, M. G., 2007. Tectonic Evolution of the North China Block: From Orogen to Craton to Orogen. In: Zhai, M. G., Windley, B. F., Kusky, T. M., et al., eds., Mesozoic Sub-Continental Lithospheric Thinning under Eastern Asia. Geological Society, London, Special Publication, 280: 1–34

[15]

Kwon S., Sajeev K., Mitra G., . Evidence for Permo-Triassic Collision in Far East Asia: The Korean Collisional Orogen. Earth and Planetary Science Letters, 2009, 279(3–4): 340-349.

[16]

Li S. Z., Kusky T. M., Liu X. C., . Two-Stage Collision-Related Extrusion of the Western Dabie HP-UHP Metamorphic Terranes, Central China: Evidence from Quartz c-Axis Fabrics and Structures. Gondwana Research, 2009, 16(2): 294-309.

[17]

Li, S. Z., Kusky, T. M., Wang, L., et al., 2007. Collision Leading to Multiple-Stage Large-Scale Extrusion: Insights from the Mianlue Suture. In: Zhai, M. G., Xiao, W. J., Kusky, T. M., et al., eds., Tectonic Evolution of China and Adjacent Crustal Fragments. Gondwana Research, 12(1–2): 121–143, doi:10.1016/j.gr.2006.11.011

[18]

Li S. Z., Kusky T. M., Zhao G. C., . Thermochronological Constraints on Two-Stage Extrusion of HP/UHP Terranes in the Dabie-Sulu Orogen, East-Central China. Tectonophysics, 2011, 504(1–4): 25-42.

[19]

Li S. Z., Kusky T. M., Zhao G. C., . Two-Stage Triassic Exhumation of HP-UHP Terrains in the Western Dabie Orogen of China: Constraints from Structural Geology. Tectonophysics, 2010, 490(3–4): 267-293.

[20]

Li S. Z., Zhang G. W., Li Y. L., . Deformation and Orogeny of the Mianlue Suture Zone of the Qinling Orogenic Belt. Acta Geologica Sinica, 2002, 76(4): 469-483.

[21]

Liou J. G., Ernst W. G., Zhang R. Y., . Ultrahigh-Pressure Minerals and Metamorphic Terranes—The View from China. Journal of Asian Earth Sciences, 2009, 35(3–4): 199-231.

[22]

Liu S. F., Heller P. L., Zhang G. W.. Mesozoic Basin Development and Tectonic Evolution of the Dabie Orogenic Belt, Central China. Tectonics, 2003, 22 4 1038

[23]

Liu S. F., Steel R., Zhang G. W.. Mesozoic Sedimentary Basin Development and Tectonic Implication, Northern South China Block, Eastern China: Record of Continent-Continent Collision. Journal of Asian Earth Sciences, 2004, 25: 9-27.

[24]

Liu X. C., Wei C. J., Li S. Z., . Thermobaric Structure of a Traverse across Western Dabie: Implications for Collision Tectonics between the Sino-Korean and South China Cratons. Journal of Metamorphic Geology, 2004, 22(4): 361-379.

[25]

Liu X. C., Jahn B. M., Liu D. Y., . SHRIMP U-Pb Zircon Dating of a Metagabbro and Eclogites from Western Dabieshan (Hong’an Block), China, and Its Tectonic Implications. Tectonophysics, 2004, 394(3–4): 171-192.

[26]

Llana-Funez S., Marcos A.. Convergence in a Thermally Softened Thick Crust: Variscan Intracontinental Tectonics in Iberian Plate Rocks. Terra Nova, 2007, 19(5): 393-400.

[27]

Maruyama S., Liou J. G., Zhang R. Y.. Tectonic Evolution of the Ultrahigh-Pressure (UHP) and High-Pressure (HP) Metamorphic Belts from Central China. Island Arc, 1994, 3(2): 112-121.

[28]

Meng Q. R., Zhang G. W.. Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China. Tectonophysics, 2000, 323(3–4): 183-196.

[29]

Metcalfe I.. Paleozoic and Mesozoic Tectonic Evolution and Palaeogeography of East Asian Crustal Fragments: The Korean Peninsula in Context. Gondwana Research, 2006, 9(1–2): 24-46.

[30]

Morley C. K.. A Tectonic Model for the Tertiary Evolution of Strike-Slip Faults and Rift Basins in SE Asia. Tectonophysics, 2002, 347(4): 189-215.

[31]

Oh C. W., Choi S. G., Seo J., . Neoproterozoic Tectonic Evolution of the Hongseong Area, Southwestern Gyeonggi Massif, South Korea: Implications for the Tectonic Evolution of Northeast Asia. Gondwana Research, 2009, 16(2): 272-284.

[32]

Oh C. W., Kusky T. M.. The Late Permian to Triassic Hongseong-Odesan Collision Belt in South Korea, and Its Tectonic Correlation with China and Japan. International Geology Review, 2007, 49(7): 636-657.

[33]

Ratschbacher, L., Franz, L., Enkelmann, E., et al., 2006. The Sino-Korean-Yangtze Suture, the Huwan Detachment, and the Paleozoic-Tertiary Exhumation of (Ultra) High-Pressure Rocks along the Tongbai-Xinxian-Dabie Mountains. In: Hacker, B. R., McClelland, W. C., Liou, J. G., eds., Ultrahigh-Pressure Metamorphism: Deep Continental Subduction. Geological Society of America Special Paper, 403: 45–75

[34]

Ratschbacher L., Hacker B. R., Calvert A., . Tectonics of the Qinling (Central China): Tectonostratigraphy, Geochronology, and Deformation History. Tectonophysics, 2003, 366: 1-53.

[35]

Ratschbacher L., Hacker B. R., Webb L. E., . Exhumation of the Ultrahigh-Pressure Continental Crust in East Central China: Cretaceous and Cenozoic Unroofing and the Tan-Lu Fault. Journal of Geophysical Research, 2000, 105(B6): 13303-13338.

[36]

Sajeev K., Jeong J., Kwon S., . High P-T Granulite Relicts from the Imjingang Belt, South Korea: Tectonic Significance. Gondwana Research, 2009, 17(1): 75-86.

[37]

Santosh M., Maruyama S., Omori S.. A Fluid Factory in Solid Earth. Lithosphere, 2009, 1: 29-33.

[38]

Schmalholz S. M., Kaus B. J. P., Burg J. P.. Stress-Strength Relationships in the Lithosphere during Continental Collision. Geology, 2009, 37: 775-778.

[39]

Schulmann K., Schaltegger U., Jezek J., . Rapid Burial and Exhumation during Orogeny: Thickening and Synconvergent Exhumation of Thermally Weakened and Thinned Crust (Variscan Orogen in Western Europe). American Journal of Science, 2002, 302(10): 856-879.

[40]

Sun W. D., Li S. G., Sun Y., . Mid-Paleozoic Collision in the North Qinling: Sm-Nd, Rb-Sr and 40Ar/39Ar Ages and Their Tectonic Implications. Journal of Asian Earth Sciences, 2002, 21(1): 69-76.

[41]

Tapponnier P., Peltzer G., Ledain A. Y., . Propagating Extrusion Tectonics in Asia—New Insights from Simple Experiments with Plasticine. Geology, 1982, 10(12): 611-616.

[42]

Vaughan A. P. M., Leat P. T., Pankhurst R. J.. Terrane Processes at the Margins of Gondwana. Geological Society, London, Special Publication, 2005, 246: 1-21.

[43]

Wallis S., Ishiwatari A., Hirajima T., . Occurrence and Field Relationships of Ultrahigh-Pressure Metagranitoid and Coesite Eclogite in the Su-Lu Terrane, Eastern China. Journal of the Geological Society, London, 1997, 154: 45-54.

[44]

Wallis S., Tsuboi M., Suzuki K., . Role of Partial Melting in the Evolution of the Sulu (Eastern China) Ultrahigh Pressure Terrane. Geology, 2005, 33: 129-132.

[45]

Wang E. Q., Meng Q. R., Burchfiel B. C., . Mesozoic Large-Scale Lateral Extrusion, Rotation, and Uplift of the Tongbai-Dabie Shan Belt in East China. Geology, 2003, 31(4): 307-310.

[46]

Wang L., Jin Z. M., Kusky T. M., . Microfabric Characteristics and Rheological Significance of Jadeite-Quartzite from Shuanghe, Dabie Mountains. Journal of Metamorphic Geology, 2010, 28(2): 163-182.

[47]

Wang L., Kusky T. M., Li S. Z.. Structural Geometry and Evolution of an Exhumed Ultra-High Pressure Eclogite Massif, Yangkou Bay, Sulu Belt, China. Journal of Structural Geology, 2010, 32: 423-444.

[48]

Xu, Z. Q., Zeng, L. S., Liu, F. L., et al., 2006. Polyphase Subduction and Exhumation of the Sulu High-Pressure-Ultrahigh Pressure Metamorphic Terrane. In: Hacker, B. R., McClelland, W. C., Liou, J. G., eds., Ultra-High Pressure Metamorphism: Deep Continental Subduction. Geological Society of America Special Paper, 403: 93–113

[49]

Yin A., Nie S. Y.. An Indentation Model for the North and South China Collision and the Development of the Tan-Lu and Honam Fault Systems, Eastern Asia. Tectonics, 1993, 12(4): 801-813.

[50]

Zak J., Holub F. V., Verner K.. Tectonic Evolution of a Continental Magmatic Arc from Transpression in the Upper Crust to Exhumation of Mid-Crustal Orogenic Root Recorded by Episodically Emplaced Plutons: The Central Bohemian Plutonic Complex (Bohemian Massif). International Journal of Earth Sciences, 2005, 94(3): 385-400.

[51]

Zhai M. G., Guo J. H., Li Z., . Linking the Sulu UHP Belt to the Korean Peninsula: Evidence from Ec logite, Precambrian Basement, and Paleozoic Sedimentary Basins. Gondwana Research, 2007, 12(4): 388-403.

[52]

Zhang K. J.. Escape Hypothesis for North and South China Collision and Tectonic Evolution of the Qinling Orogen, Eastern Asia. Eclogae Geologicae Helvetiae, 2002, 95(2): 237-247.

[53]

Zhang R. Y., Liou J. G., Ernst W. G.. The Dabie-Sulu Continental Collision Zone: A Comprehensive Review. Gondwana Research, 2009, 16(1): 1-26.

[54]

Zhang Y. Q., Vergely P., Mercier J.. Active Faulting in and along the Qinling Range (China) Inferred from Spot Imagery Analysis and Extrusion Tectonics of South China. Tectonophysics, 1995, 243(1–2): 69-95.

[55]

Zheng Y. F.. A Perspective View on Ultrahigh-Pressure Metamorphism and Continental Collision in the Dabie-Sulu Orogenic Belt. Chinese Sci. Bull., 2008, 53(20): 3081-3104.

[56]

Zheng Y. F., Wu Y. B., Zhao Z. F., . Metamorphic Effect on Zircon Lu-Hf and U-Pb Isotope Systems in Ultrahigh-Pressure Eclogite Facies Metagranite and Metabasite. Earth and Planetary Science Letters, 2005, 240(2): 378-400.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/