Geological features and deformational ages of the basal thrust belt of the miaowan ophiolite in the southern Huangling anticline and its tectonic implications

Xingfu Jiang , Songbai Peng , Timothy M. Kusky , Lu Wang , Junpeng Wang , Hao Deng

Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (5) : 705 -718.

PDF
Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (5) : 705 -718. DOI: 10.1007/s12583-012-0289-7
Article

Geological features and deformational ages of the basal thrust belt of the miaowan ophiolite in the southern Huangling anticline and its tectonic implications

Author information +
History +
PDF

Abstract

The stratigraphic, structural and metamorphic features of the basal thrust belt of the ca. 1.0 Ga Miaowan (庙湾) ophiolite in the southern Huangling (黄陵) anticline, show that it can be divided into three tectono-lithostratigraphic units from north to south: mélange/wildflysch rock units, flysch rock units, and sedimentary rock units of the autochthonous (in situ) stable continental margin. The three units underwent thrust-related deformation during emplacement of the Miaowan ophiolitic nappe, with kinematic indicators indicating movement from the NNE to SSW, with the metamorphic grade reaching greenschist-amphibolite facies. LA-ICP-MS U-Pb geochronology of zircons from granite pebbles in the basal thrust-related wildflysch yield ages of 859±26, 861±12 and 871±16 Ma; whereas monzonitic granite clasts yield an age of 813±14 Ma. This indicates that the formation age of the basal thrust belt is not older than 813±14 Ma, and is earlier than the earliest formation time of the majority of the Neoproterozoic Huangling granitoid intrusive complex, which did not experience penetrative ductile deformation. These results suggest that the northern margin of the Yangtze craton was involved in collisional tectonics that continued past 813 Ma. This may be related to the amalgamation of the Yangtze craton with the Rodinia supercontinent. Through comparative study of lithology, zircon geochronology, REE patterns between granodiorite and tonalite pebbles in the basal thrust-zone conglomerate, it can be concluded that the pebbles are the most similar to the Huanglingmiao (黄陵庙) rock-mass (unit), implying that they may have come from Huanglingmiao rock-mass. Zircon cores yield xenocrystic ages of 2 074±120 Ma, suggesting that the protolith of the Neoproterozoic Huangling granitoid intrusive complex may have originated from partial melting of older basement rocks, that is to say there may be Paleoproterozoic crystalline basement in the southern Huangling anticline. The ages of xenocrystic zircons in the granite pebbles in the basal-thrust conglomerate/wildflysch show a correlation with the age spectra from Australia, implying that the terrain that collided with the northern margin of the Yangtze craton and emplaced the Miaowan ophiolite at ca. 813 Ma may have been derived from the Australian segment of Rodinia.

Keywords

Yangtze craton / Huangling anticline / thrust tectonics / ophiolite emplacement / zircon U-Pb dating / Rodinia supercontinent

Cite this article

Download citation ▾
Xingfu Jiang, Songbai Peng, Timothy M. Kusky, Lu Wang, Junpeng Wang, Hao Deng. Geological features and deformational ages of the basal thrust belt of the miaowan ophiolite in the southern Huangling anticline and its tectonic implications. Journal of Earth Science, 2012, 23(5): 705-718 DOI:10.1007/s12583-012-0289-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chapple W. M.. Mechanics of Thin-Skinned Fold-and-Thrust Belts. Geological Society of American Bulletin, 1978, 89: 1189-1198.

[2]

Chen Y. L., Luo Z. H., Liu C.. New Recognition of Kangding-Mianning Metamorphic Complexes from Sichuan, Western Yangtze Craton: Evidence from Nd Isotopic Compositon. Earth Science-Journal of China University of Geosciences, 2001, 26(3): 279-285.

[3]

Condie K. C., Belousova E., Griffin W. L., . Granitoid Events in Space and Time: Constraints from Igneous and Detrital Zircon Age Spectra. Gondwana Research, 2009, 15: 228-242.

[4]

Davis D., Suppe J., Dahlen F. A.. Mechanics of Fold-and-Thrust Belts and Accretionary Wedges. Journal of Geophysical Research, 1983, 88(B2): 1153-1172.

[5]

Feng D. Y., Li Z. C., Zhang Z. C.. Intrusive Ages and Isotopic Characteristics of Massives in the South of Huangling Granitoids. Hubei Geology, 1991, 5(2): 1-12.

[6]

Fu G. Q., Yuan H. H., Li S. L.. Discovery of Archean Granite-Greenstone Terrain of the Northern Huangling Block, Western Hubei Province, China. J. Mineral. Petrol., 1993, 13(1): 5-13.

[7]

Gao S., Ling W. L., Qiu Y., . Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochimica et Cosmochimica Acta, 1999, 63(13–14): 2071-2088.

[8]

Gao S., Qiu Y. M., Ling W. L., . The Single Grain Zircon SHRIMP U-Pb Geochronology from Kongling High-Grade Metamorphic Terrain-Discovery of >3.2 Ga Continental Crust in Yangtze Craton. Science in China (Series D), 2001, 31(1): 27-35.

[9]

Golonka J.. Plate Tectonic Evolution of the Southern Margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics, 2004, 381(1–4): 235-273.

[10]

Hans L.. Jura, Alps and the Boundary of the Adria Subplate. Tectonophysics, 2010, 484(1–4): 223-239.

[11]

Hinton R. W., Upton B. G. J.. The Chemistry of Zircon: Variations within and between Large Crystals from Syenite and Alkali Basalt Xenoliths. Geoehimica et Cosmoehimica Acta, 1991, 55(11): 3287-3302.

[12]

Hoskin P. W. O., Ireland T. I.. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 2000, 28(7): 627-630.

[13]

Jiang J. S.. Isotopic Geochronology and Crustal Evolution of Huangling Metamorphic Terrain. Journal of Changchun College of Geology, 1986, 3: 1-11.

[14]

Li X. H., Liang X. R., Sun M., . Geochronology and Geochemistry of Single-Grain Zircons: Simultaneous In-Situ Analysis of U-Pb Age and Trace Elements by LAM-ICP-MS. Eur. J. Mineral., 2000, 12: 1015-1024.

[15]

Li X. H., Wang X. C., Li W. X., . Petrogenesis and Tectonic Significance of Neoproterozoic Basaltic Rocks in South China: From Orogenesis to Intracontinental Rifting. Geochimica, 2008, 37(4): 382-398.

[16]

Li Y. L., Zhou H. W., Li X. H., . 40Ar-39Ar Plateau Ages of Biotite and Amphibole from Tonalite of Huangling Granitoids and Their Cooling Curve. Acta Petrologica Sinica, 2007, 23(5): 1067-1074.

[17]

Li Z. C., Wang G. H., Zhang Z. C.. Isotopic Age Spectrum of the Huangling Granitic Batholith, Western Hubei. Geology and Mineral Resources of South China, 2002, 3: 19-28.

[18]

Li Z. X., Li X. H., Kinny P. D., . Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents: Evidence for a Mantle Superplume that Broke-Up Rodinia. Precambrian Research, 2003, 122(1–4): 85-109.

[19]

Ling W. L., Gao S., Zhang B. R., . Late Paleoproterozoic Tectonic Thermal Event within the Yangtze Continental Interior and Its Evolution. Chinese Science Bulletin, 2000, 45(21): 2343-2348.

[20]

Ling W. L., Gao S., Zhang B. R., . Neoproterozoic Tectonic Evolution of the Northwestern Yangtze Craton, South China: Implications for Amalgamation and Breakup of the Rodinia Supercontinent. Precambrian Research, 2003, 122(1–4): 111-140.

[21]

Liu Y. S., Hu Z. C., Gao S., . In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 2008, 257(1–2): 34-43.

[22]

Liu Y. S., Gao S., Hu Z. C., . Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 2010, 51(1–2): 537-571.

[23]

Liu Y. S., Hu Z. C., Zong K. Q., . Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 2010, 55(15): 1535-1546.

[24]

Ludwig K. R.. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel, 2003, Berkeley: Berkeley Geochronology Center

[25]

Ma D. Q., Du S. H., Xiao Z. F.. The Origin of Huangling Granite Batholith. Acta Petrologica et Mineralogica, 2002, 21(2): 151-161.

[26]

Peng M., Wu Y. B., Wang J., . Paleoproterozoic Mafic Dyke from Kongling Terrain in the Yangtze Craton and Its Implication. Chinese Science Bulletin, 2009, 54(5): 641-647.

[27]

Peng S. B., Li C. N., Kusky T. M., . Discovery and Its Tectonic Significance of the Proterozoic Miaowan Ophiolites in the Southern Huangling Anticline, Western Hubei, China. Geological Bulletin of China, 2010, 29(1): 8-20.

[28]

Peng S. B., Kusky T. M., Jiang X. F., . Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China’s Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 2012, 21(2-3): 577-594.

[29]

Peresson H., Decker K.. The Tertiary Dynamics of the Northern Eastern Alps (Austria): Changing Palaeostresses in a Collisional Plate Boundary. Tectonophysics, 1997, 272(2–4): 125-157.

[30]

Qiu Y. M., Gao S., Mcnaughton N. J., . First Evidence of >3.2 Ga Continental Crust in the Yangtze Craton of South China and Its Implications for Archean Crustal Evolution and Phanerozoic Tectonics. Geology, 2000, 28(1): 11-14.

[31]

Rodgers J.. Fold-and-Thrust Belts in Sedimentary, Part I: Typical Examples. American Journal of Science, 1990, 290: 321-359.

[32]

Rodgers J.. Fold-and-Thrust Belts in Sedimentary, Part II: Other Examples, Especially Variants. American Journal of Science, 1991, 291: 825-886.

[33]

Samson S. D., Coler D. G., Speer J. A.. Geochemical and Nd-Sr-Pb Isotopic Composition of Alleghanian Granites of the Southern Appalachians: Origin, Tectonic Setting, and Source Characterization. Earth and Planetary Science Letters, 1995, 134(3–4): 359-376.

[34]

Sasseville C., Tremblay A., Clauer N., . K-Ar Age Constraints on the Evolution of Polydeformed Fold-Thrust Belts: The Case of the Northern Appalachians (Southern Quebec). Journal of Geodynamics, 2008, 45(2–3): 99-119.

[35]

Simony P. S., Carr S. D.. Cretaceous to Eocene Evolution of the Southeastern Canadian Cordillera: Continuity of Rocky Mountain Thrust Systems with Zones of “In-Sequence” Mid-Crustal Flow. Journal of Structural Geology, 2011, 33(9): 1417-1434.

[36]

Song C. Z., Liu G. S., Niu M. L., . Cenozoic Structures and Dynamics on the Northern Margin of Qinling-Dabie Orogenic Belt. Geological Bulletin of China, 2002, 21(8–9): 530-535.

[37]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism of the Ocean Basins. Geological Society, London, Special Publications, 42: 313–345, doi:10.1144/GSL.SP.1989.042.01.19

[38]

Sun X. M., Wu G. Y., Hao F. J., . Epochs and Space-Time Migrating of Meso-Cenozoic Thrust-Nappe Tectonics in the North Qinling-Dabie Orogen. Chinese Journal of Geology, 2004, 39(1): 63-76.

[39]

Thakur V. C.. Tectonics of the Central Crystallines of Western Himalaya. Tectonophysics, 1980, 62(1–2): 141-154.

[40]

Tremblay A., Ruffet G., Bédard J. H.. Obduction of Tethyan-Type Ophiolites-A Case-Study from the Thetford-Mines Ophiolitic Complex, Quebec Appalachians, Canada. Lithos, 2011, 125(1-2): 10-26.

[41]

Wang X. F., Ma D. Q., Chen X. H., . Precambrian Evolution of the Huangling Arch, China and Its Relation to the Rodinia Breakup and Assembly. Gondwana Research, 2001, 4(4): 816-817.

[42]

Wang J., Liu B. J., Pan G. T.. Neoproterozoic Rifting History of South China Significance to Rodinia Breakup. J. Mineral. Petrol., 2001, 21(3): 135-145.

[43]

Wei Y. X., Peng S. B., Jiang X. F., . SHRIMP Zircon U-Pb Ages and Geochemical Characteristics of the Neoproterozoic Granitoids in the Huangling Anticline and Its Tectonic Setting. Journal of Earth Science, 2012, 23(5): 659-675.

[44]

Wiedenbeck M., Alle P., Corfu F., . Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 1995, 19(1): 1-23.

[45]

Wu Y. B., Chen D. G., Xia Q. K., . Trace Element Analysis of Zircons from Eclogite in Huangzhen in Dabie: Trace Element Characteristics of Eclogite-Facies Metamorphic Zircons. Chinese Science Bulletin, 2002, 47(11): 859-863.

[46]

Wu Y. B., Chen D. G., Xia Q. K., . Granulite in the Dabie Mountains Huangtuling Zircon LAM-ICP-MS Trace Element Analysis and Pb-Pb Dating. Science in China (Series D), 2003, 33(1): 20-28.

[47]

Xie D. N., He M. X., Zhou L. F., . Characteristics of Overthrust Structures on Northern Edge of East Qinling-Dabie Orogenic Belt and Hydrocarbon Potentials. Oil & Gas Geology, 2006, 27(1): 48-55.

[48]

Xiong Q., Zheng J. P., Yu C. M., . Zircon U-Pb Age and Hf Isotope of Quanyishang A-Type Granite in Yichang: Signification for the Yangtze Continental Cratonization in Paleoproterozoic. Chinese Science Bulletin, 2008, 53(22): 2782-2792.

[49]

Ye P. S.. Ophiolites and Thrust System of Middle Lhasa Block: [Dissertation], 2004, Beijing: Chinese Academy of Geological Sciences 16 17

[50]

Zhang C. H., Song H. L.. Mesozoic Thrust Tectonic in Yanshan Intraplate Orogen and the Differences between Them and Those of Foreland Fold-and-Thrust Belt. Earth Science-Journal of China University of Geosciences, 1997, 22(1): 33-36.

[51]

Zhang S. B., Zheng Y. F., Wu Y. B., . Zircon U-Pb Age and Hf-O Isotope Evidence for Paleoproterozoic Metamorphic Event in South China. Precambrian Research, 2006, 151(3–4): 265-288.

[52]

Zhang S. B., Zheng Y. F., Zhao Z. F., . Origin of TTG-Like Rocks from Anatexis of Ancient Lower Crust: Geochemical Evidence from Neoproterozoic Granitoids in South China. Lithos, 2009, 113: 347-368.

[53]

Zhang S. B., Zheng Y. F., Zhao Z. F.. Temperature Effect over Garnet Effect on Uptake of Trace Elements in Zircon of TTG-Like Rocks. Chemical Geology, 2010, 274: 108-125.

[54]

Zhao J. H., Zhou M. F., Zheng J. P.. Metasomatic Mantle Source and Crustal Contamination for the Formation of the Neoproterozoic Mafic Dike Swarm in the Northern Yangtze Block, South China. Lithos, 2010, 115: 177-189.

[55]

Zheng Y. F., Zhang S. B.. Formation and Evolution of the Precambrian Continental Crust in South China. Chinese Science Bulletin, 2007, 52(1): 1-10.

[56]

Zhou Z. Y., Yang J. X., Zhou H. W., . Significance on Hubei Huangling Complex in the Rodinia Supercontinent of Evolution. Resources Environment and Engineering, 2007, 21(4): 380-384.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/