Granulite facies metamorphic age and tectonic implications of BIFs from the Kongling Group in the northern Huangling anticline

Yang Cen, Songbai Peng, Timothy M. Kusky, Xingfu Jiang, Lu Wang

Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (5) : 648-658.

Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (5) : 648-658. DOI: 10.1007/s12583-012-0286-x
Article

Granulite facies metamorphic age and tectonic implications of BIFs from the Kongling Group in the northern Huangling anticline

Author information +
History +

Abstract

We report preliminary results of a geochemical study on banded iron formations (BIFs) in the Zhaojiayangpo (赵家阳坡) area from the Kongling (崆岭) Group in the northern Huangling (黄陵) anticline, on the northern margin of the Yangtze craton. The CL (cathodoluminescence) images of zircons mostly have sector zoning, fir-tree zoning and patched zoning, and a few show core-rim textures with rims having patched zoning. The calculated formation temperatures using the Ti-in-zircon thermometer are 660–808 °C (714 °C in average), all indicating that the BIFs underwent granulite facies metamorphism. The age of zircons with granulite facies metamorphism is 1 990±14 Ma by LA-ICP-MS U-Pb dating, indicating that there was a significant granulite facies tectonothermal event in the northern Huangling anticline in the Paleoproterozoic, which may be related with tectonic thermal events of the metamorphism caused by the assembly of the Columbia supercontinent with South China. Moreover, the REE pattern is characterized by depletion in LREE while relatively flat in HREE, LaN/YbN=0.26, with a positive Eu anomaly (Eu/Eu*=1.59), which reveals its hydrothermal sedimentation origin and it may have formed in the environment of submarine exhalation.

Keywords

Huangling anticline / banded iron formation (BIF) / zircon LA-ICP-MS U-Pb dating / granulite facies metamorphism / Columbia supercontinent

Cite this article

Download citation ▾
Yang Cen, Songbai Peng, Timothy M. Kusky, Xingfu Jiang, Lu Wang. Granulite facies metamorphic age and tectonic implications of BIFs from the Kongling Group in the northern Huangling anticline. Journal of Earth Science, 2012, 23(5): 648‒658 https://doi.org/10.1007/s12583-012-0286-x

References

Alibo D. S., Nozaki Y.. Rare Earth Elements in Seawater: Particle Association, Shale-Normalization, and Ce Oxidation. Geochim. Cosmochim. Acta, 1999, 63(3–4): 363-372.
CrossRef Google scholar
Andersen T.. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chem. Geol., 2002, 192(1–2): 59-79.
CrossRef Google scholar
Bau M., Möller P.. Rare Earth Element Systematics of the Chemically Precipitated Component in Early Precambrian Iron Formations and the Evolution of the Terrestrial Atmosphere-Hydrosphere-Lithosphere System. Geochim. Cosmochim. Acta, 1993, 57(10): 2239-2249.
CrossRef Google scholar
Bau M.. Effects of Syn- and Post-Depositional Processes on the Rare-Earth Element Distribution in Precambrian Iron-Formations. Eur. J. Mineral., 1993, 5: 257-267.
Bau M., Dulski P., Möller P.. Yttrium and Holmium in South Pacific Seawater: Vertical Distribution and Possible Fractionation Mechanisms. Chem. Erde, 1995, 55: 1-15.
Bau M., Dulski P.. Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Res., 1996, 79(1–2): 37-55.
CrossRef Google scholar
Bekker A., Slack J. F., Planavsky N., . Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes. Economic Geology, 2010, 105(3): 467-508.
CrossRef Google scholar
Bureau of Geology and Mineral Resources of Hubei Province, 1987. 1: 50 000 Geological Map of Eastern Xingshan and Shuiyuesi Area. The Geological Party of West Hubei, Yichang (in Chinese)
Bureau of Geology and Mineral Resources of Hubei Province, 1994. 1: 50 000 Geological Map of Maopinghe Area. The Geological Party of West Hubei, Yichang (in Chinese)
Corfu F., Hanchar J. M., Hoskin P. W. O., . Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 469-500.
CrossRef Google scholar
Derry L. A., Jacobsen S. B.. The Chemical Evolution of Precambrian Seawater: Evidence from REEs in Banded Iron Formations. Geochim. Cosmochim. Acta, 1990, 54(11): 2965-2977.
CrossRef Google scholar
Ferry J. M., Watson E. B.. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contrib. Mineral. Petrol., 2007, 154(4): 429-437.
CrossRef Google scholar
Frei R., Dahl P. S., Duke E. F., . Trace Element and Isotopic Characterization of Neoarchean and Paleoproterozoic Iron Formations in the Black Hills (South Dakota, USA): Assessment of Chemical Change during 2.9-1.9 Ga Deposition Bracketing the 2.4–2.2 Ga First Rise of Atmospheric Oxygen. Precambrian Res., 2008, 162(3–4): 441-474.
CrossRef Google scholar
Fryer B. J.. Rare Earth Evidence in Iron-Formations for Changing Precambrian Oxidation States. Geochim. Cosmochim. Acta, 1977, 41(3): 361-367.
CrossRef Google scholar
Gao S., Ling W. L., Qiu Y., . Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochim. Cosmochim. Acta, 1999, 63(13–14): 2071-2088.
CrossRef Google scholar
Gao S., Qiu M., Ling W. L., . The Single Grain Zircon SHRIMP U-Pb Geochronology from Kongling High-Grade Metamorphic Terrain-Discovery of >3.2 Ga Continental Crust in Yangtze Craton. Science in China (Series D), 2001, 31(1): 27-35.
Jiang J. S.. Isotopic Geochronology and Crustal Evolution of the Huangling Metamorphic Terrain. J. Changchun College of Geology, 1986, 3: 1-11.
Kato Y., Ohta I., Tsunematsu T., . Rare Earth Element Variations in Mid-Archean Banded Iron Formations: Implications for the Chemistry of Ocean and Continent and Plate Tectonics. Geochim. Cosmochim. Acta, 1998, 62(21–22): 3475-3497.
CrossRef Google scholar
Klein C., Beukes N. J.. Geochemistry and Sedimentology of a Facies Transition from Limestone to Iron-Formation Deposition in the Early Proterozoic Transvaal Supergroup, South Africa. Economic Geology, 1989, 84(7): 1733-1774.
CrossRef Google scholar
Klein C.. Some Precambrian Banded Iron-Formations (BIFs) from around the World: Their Age, Geologic Setting, Mineralogy, Metamorphism, Geochemistry, and Origins. American Mineralogist, 2005, 90: 1473-1499.
CrossRef Google scholar
Li F. X., Nie X. W.. The Geological Age and Stratigraphic Division of Kongling Group in Northern Part of Huangling Faulted Upwapping. Arch. Geology of the Hubei Province, 1987, 1(1): 28-41.
Li S. X., Ji S. K., Ma Z. H., . Geology of Metamorphic Sedimentary Iron Deposit in Wutaishan Area, 1986, Changchun: Jilin Science and Technology Publishing House
Ling W. L., Gao S., Zhang B. R., . Late Paleoproterozoic Tectonic Thermal Event within the Yangtze Continental Interior and Its Evolution. Chin. Sci. Bull., 2000, 45(21): 2343-2348.
Ma D. Q., Li Z. C., Xiao Z. F.. The Constitute, Geochronology and Geologic Evolution of the Kongling Complex, Western Hubei. Acta Geoscientica Sinica, 1997, 18(3): 233-241.
Pecoits E., Gingras M. K., Barley M. E., . Petrography and Geochemistry of the Dales Gorge Banded Iron Formation: Paragenetic Sequence, Source and Implications for Palaeo-Ocean Chemistry. Precambrian Res., 2009, 172(1–2): 163-187.
CrossRef Google scholar
Peng M., Wu Y. B., Wang J., . Paleoproterozoic Mafic Dyke from Kongling Terrain in the Yangtze Craton and Its Implication. Chin. Sci. Bull., 2009, 54(5): 641-647.
Peng S. B., Kusky T. M., Jiang X. F., . Geology, Geochemistry and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China’s Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 2012, 21(2–3): 577-594.
CrossRef Google scholar
Qiu Y. M., Gao S., McNaughton N. J., . First Evidence of >3.2 Ga Continental Crust in the Yangtze Craton of South China and Its Implications for Archean Crustal Evolution and Phanerozoic Tectonics. Geology, 2000, 28(1): 11-14.
CrossRef Google scholar
Rogers J. J. W., Santosh M.. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 2002, 5(1): 5-22.
CrossRef Google scholar
Rogers J. J. W., Santosh M.. Supercontinent in Earth History. Gondwana Research, 2003, 6(3): 357-368.
CrossRef Google scholar
Rogers J. J. W., Santosh M.. Tectonics and Surface Effects of the Supercontinent Columbia. Gondwana Research, 2009, 15(3–4): 373-380.
CrossRef Google scholar
Rubatto D.. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chem. Geol., 2002, 184(1–2): 123-138.
CrossRef Google scholar
Shen Q. H., Song H. X., Yang C. H., . Petrochemical Characteristics and Geological Significations of Banded Iron Formations in the Wutai Mountain of Shanxi and Qian’an of Eastern Hebei. Acta Petrologica et Mineralogica, 2011, 30(2): 161-171.
Slack J. F., Grenne T., Bekker A., . Suboxic Deep Seawater in the Late Paleoproterozoic: Evidence from Hematitic Chert and Iron Formation Related to Seafloor-Hydrothermal Sulfide Deposits, Central Arizona, USA. Earth. Planet. Sci. Lett., 2007, 255(1–2): 243-256.
CrossRef Google scholar
Taylor S. R., McLennan S. M.. The Continental Crust: Its Composition and Evolution, 1985, Oxford: Blackwell
Trendall A. F.. Trendall A. F., Morris R. C.. Introduction. Iron-Formation: Facts and Problems, 1983, Amsterdam: Elsevier 1 11
CrossRef Google scholar
Watson E. B., Wark D. A., Thomas J. B.. Crystallization Thermometers for Zircon and Rutile. Contrib. Mineral. Petrol., 2006, 151(4): 413-433.
CrossRef Google scholar
Wu Y. B., Zheng Y. F.. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chin. Sci. Bull., 2004, 49(16): 1589-1604.
Wu Y. B., Gao S., Gong H. J., . Zircon U-Pb Age, Trace Element and Hf Isotope Composition of Kongling Terrane in the Yangtze Craton: Refining the Timing of Palaeoproterozoic High-Grade Metamorphism. J. Metamorph. Geol., 2009, 27(6): 461-477.
CrossRef Google scholar
Xiong Q., Zheng J. P., Yu C. M., . Zircon U-Pb Age and Hf Isotope of Quanyishang A-Type Granite in Yichang: Signification for the Yangtze Continental Cratonization in Paleoproterozoic. Chin. Sci. Bull., 2008, 53(22): 2782-2792.
Yamaguchi, K. E., Ohmoto, H., 2000. Geochemistry of Rare Earth Elements in Precambrian Banded Iron Formations: I. Are the Ce Anomalies Real? First Astrobiology Science Conference, California. 296
Yuan H. H., Zhang Z. L., Liu W., . Direct Dating Method of Zircon Grains by 207Pb/206Pb. Mineral. Petrol., 1991, 11(2): 72-79.
Zhang S. B., Zheng Y. F., Wu Y. B., . Zircon Isotope Evidence for ≥3.5 Ga Continental Crust in the Yangtze Craton of China. Precambrian Res., 2006, 146(1–2): 16-34.
CrossRef Google scholar
Zhang S. B.. Geochemistry of the Yangtze Continental Nucleus and Its Anatectic Granitoids: [Dissertation], 2008, Hefei: University of Science and Technology of China
Zhao G. C., Li S. Z., Sun M., . Assembly, Accretion, and Break-up of the Palaeo-Mesoproterozoic Columbia Supercontinent: Record in the North China Craton Revisited. International Geology Review, 2011, 53(11–12): 1331-1356.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/