SHRIMP zircon U-Pb ages and geochemical characteristics of the neoproterozoic granitoids in the Huangling anticline and its tectonic setting

Yunxu Wei , Songbai Peng , Xingfu Jiang , Zhongqin Peng , Lianhong Peng , Zhihong Li , Peng Zhou , Xiongwei Zeng

Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (5) : 659 -676.

PDF
Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (5) : 659 -676. DOI: 10.1007/s12583-012-0284-z
Article

SHRIMP zircon U-Pb ages and geochemical characteristics of the neoproterozoic granitoids in the Huangling anticline and its tectonic setting

Author information +
History +
PDF

Abstract

SHRIMP zircon U-Pb dating of the Neoproterozoic Maoping (茅坪) series (Sandouping (三斗坪) rock suite) granites exposed in the southern part of the Huangling (黄陵) anticline shows that the formation time of Sandouping biotite-hornblende tonalite intrusion, Jinpansi (金盘寺) hornblende-biotite tonalite intrusion, and Longtanping (龙潭坪) monzogranite are 863±9, 842±10, and 844±10 Ma, respectively. Their geochemical features include A/CNK=0.98–1.06, from metaluminous to weakly peraluminous, δ=1.37–1.53, Sm/Nd=0.17–0.24, and RbN/YbN=1.1–3.62. These indicate that the granite rocks are supersaturated SiO2 calc-alkaline granitoids. The characteristic of Sr-Nd isotopic composition is that the values of ɛ Nd(t) and ɛ Sr(t) are −12.4 to −11.0 and 20.2–32.2, respectively. It also suggests that the material source of the granite rocks mainly originated from the crust, and they formed in a volcanic arc tectonic environment. These facts suggest that the occurrence of Neoproterozoic granitoids in the southern part of the Huangling anticline should be related to an arc environment along an active continental margin caused by southward subduction of oceanic crust beneath the northern Yangtze craton, and the formation age is not later than 863 Ma.

Keywords

Huangling anticline / Yangtze plate / Neoproterozoic granitoid / SHRIMP zircon U-Pb dating / geochemistry / tectonic setting

Cite this article

Download citation ▾
Yunxu Wei, Songbai Peng, Xingfu Jiang, Zhongqin Peng, Lianhong Peng, Zhihong Li, Peng Zhou, Xiongwei Zeng. SHRIMP zircon U-Pb ages and geochemical characteristics of the neoproterozoic granitoids in the Huangling anticline and its tectonic setting. Journal of Earth Science, 2012, 23(5): 659-676 DOI:10.1007/s12583-012-0284-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Black L. P., Kamo S. L., Allen C. M., . TEMORA 1: A New Zircon Standard for Phanerozoic U-Pb Geochronology. Chemical Geology, 2003, 200: 155-170.

[2]

Chen W. F., Chen P. R., Huang H. Y., . Geochronology and Geochemistry of Granite and Enclosed Enclaves in Baimashan Granitoids in Hunan. Science in China, 2007, 37(7): 873-893.

[3]

Compston W., Williams I. S., Kirschvink J. L., . Zircon U-Pb Ages for the Early Cambrian Time-Scale. Journal of the Geological Society, 1992, 149: 171-184.

[4]

Compston W., Williams I. S., Meyer C.. U-Pb Geochronology of Zircons from Lunar Breccia 73217 Using a Sensitive High Mass-Resolution Ion Microprobe. Journal of Geophysical Research, 1984, 89(Suppl.): 525-534.

[5]

Corfu F., Hanchar J. M., Hoskin P. W. O., . Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 469-500.

[6]

Defant M. J., Drummond M. S.. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 1990, 347: 662-665.

[7]

Feng D. Y., Li Z. C., Zhang Z. C.. Intrusive Ages and Isotopic Characteristics of Massives in the South of Huangling Granitoids. Hubei Geology, 1991, 5(2): 1-12.

[8]

Gao S., Zhang B. R., Li Z. J.. Geochemical Evidence for Proterozoic Continental Arc and Continental-Margin Rift Magmatism along the Northern Margin of the Yangtze Craton, South China. Precambrian Research, 1990, 47: 205-221.

[9]

Gao W., Zhang C. H.. Zircon SHRIMP U-Pb Ages of the Huangling Granite and the Tuff Beds from Liantuo Formation in the Three Gorges Area of Yangtze River, China and Its Geological Significance. Geological Bulletin of China, 2009, 28(1): 45-50.

[10]

Harris, N. B. W., Pearce, J. A., Tindle, A. G., 1986. Geochemicical Characteristics of Collision-Zone Magmatism, in Collision Tectonic. In: Coward, M. P., ed., Geological Society Special Publication, 19: 67–81

[11]

Li C. N.. Trace Elements Petrology of Igneous Rocks, 1992, Wuhan: China University of Geosciences Press

[12]

Li X. H.. U-Pb Zircon Ages of Granites from the Southern Margin of the Yangtze Block: Timing of Neoproterozoic Jinning: Orogeny in SE China and Implications for Rodinia Assembly. Precambrian Research, 1999, 97(1-2): 43-57.

[13]

Li X. H., Li Z. X., Ge W. C., . U-Pb Zircon Ages of the Neoproterozoic Granitoids in South China and Their Tectonic Implications. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(4): 271-273.

[14]

Li X. H., Li Z. X., Ge W. C., . Neoproterozoic Granitoids in South China: Crustal Melting above a Mantle Plume at ca. 825 Ma?. Precambrian Research, 2003, 122(1–4): 45-83.

[15]

Li Y. L., Zhou H. W., Li X. H., . 40Ar-39Ar Plateau Ages of Biotite and Amphibole from Tonalite of Huangling Granitoids and Their Cooling Curve. Acta Petrologica Sinica, 2007, 23(5): 1067-1074.

[16]

Li Z. C., Wang G. H., Zhang Z. C.. Isotopic Age Spectrum of the Huangling Granitic Batholith, Western Hubei. Geology and Mineral Resources of South China, 2002, 3: 19-28.

[17]

Li Z. X.. Tectonic History of the Major East Asian Lithospheric Blocks since the Middle Proterozoic: A Synthesis. Mantle Dynamics and Plate Interactions in East Asia, Geodynamics 27, 1998, Washington DC: American Geophysical Union 221 243

[18]

Li Z. X., Li X. H., Kinny P. D., . The Breakup of Rodinia: Did It Start with a Mantle Plume beneath South China?. Earth Planetary Science Letters, 1999, 173(3): 171-181.

[19]

Li Z. X., Li X. H., Kinny P. D., . Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents: Evidence for a Mantle Superplume that Broke-Up Rodinia. Precambrian Research, 2003, 122(1–4): 85-109.

[20]

Li Z. X., Li X. H., Zhou H. W., . Grenvillian Continental Collision in South China: New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia. Geology, 2002, 30(2): 163-166.

[21]

Ling W. L., Gao S., Cheng J. P., . Neoproterozoic Magmatic Events within the Yangtze Continental Interior and along Its Northern Margin and Their Tectonic Impli cation: Constraints from the ELA-ICPMS U-Pb Geochronology of Zircons from the Huangling and Hannan Complexes. Acta Petrologica Sinica, 2006, 22(2): 387-396.

[22]

Lu Y. F.. Geo Kit—A Geochemistry Toolkit for Microsoft Excel. Geochimica, 2004, 33(5): 459-464.

[23]

Ludwig, K. R., 2002. SQUID 1.02, a User’s Manual. Berkeley Geochronology Center Special Publication. No. 2. 2455 Ridge Road, Berkeley

[24]

Ma D. Q., Du S. H., Xiao Z. F.. The Origin of Huangling Granite Batholith. Acta Petrologica et Mineralogica, 2002, 21(2): 151-161.

[25]

Ma G. G., Li H. Q., Zhang Z. C.. An Investigation of the Age Limits of the Sinian System in South China. Bulletin, Yichang Institute Geology and Mineral Resources, Chinese Academy of Geological Sciences, 1984, 8: 1-29.

[26]

Ma L. Y., Niu Z. J., Bai Y. S., . Sr, Nd and Pb Isotopic Geochemistry of Permian Volcanic Rocks from Southern Qinghai and Their Geological Significance. Earth Science—Journal of China University of Geosciences, 2007, 32(1): 22-28.

[27]

Maniar P. D., Piccoli P. M.. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 1989, 101: 635-643.

[28]

Middlemost E. A. K.. Magmas and Magmatic Rocks, 1985, London.: Longman 1 266

[29]

Pearce J. A., Harris N. B. W., Tindle A. G.. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rock. Journal of Petrology, 1984, 25(4): 956-983.

[30]

Peccerillo A., Taylor S. R.. Geochemistry of Eocenecalc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81.

[31]

Peng S. B., Kusky T. M., Jiang X. F., . Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China’s Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 2012, 21(2–3): 577-594.

[32]

Song B., Zhang Y. H., Wan Y. S.. Mount Making and Procedure of the SHRIMP Dating. Geological Review, 2002, 48(Suppl.): 26-30.

[33]

Streckeisen A., Le Maitre R. W.. A Chemical Approximation to the Modal QAPF Classification of the Igneous Rocks. Neues Jahrb. Miner. Abh., 1979, 136: 169-206.

[34]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implication for Mantle Composition and Processes. In: Sauders, A. D., Norry, M. J., eds., Magmantism in the Ocean Basin. Geological Society Special Publication, London, 42: 313–345

[35]

Wu Y. B., Zheng Y. F.. The Study of Zircon Genetic Mineralogy and Its Contraints for Interpretation of U-Pb Dating. Chinese Science Bulletin, 2004, 49(16): 1589-1604.

[36]

Wysoczanski R. J., Allibone A. H.. Age, Correlation, and Provenance of the Neoproterozoic Skelton Group, Antarctica: Grenville Age Detritus on the Margin of East Antarctica. The Journal of Geology, 2004, 112: 401-416.

[37]

Zhang S. B., Zheng Y. F., Zhao Z. F., . Neoproterozoic Anatexis of Archean Lithosphere: Geochemical Evidence from Felsic to Mafic Intrusions at Xiaofeng in the Yangtze Gorge, South China. Precambrian Research, 2008, 163(3–4): 210-238.

[38]

Zhang S. B., Zheng Y. F., Zhao Z. F., . Origin of TTG-Like Rocks from Anatexis of Ancient Lower Crust: Geochemical Evidence from Neoproterozoic Granitoids in South China. Lithos, 2009, 113(3–4): 347-368.

[39]

Zhu B. Q., Zhang J. L., Tu X. L., . Pb, Sr, and Nd Isotopic Features in Organic Matter from China and Their Implications for Petroleum Generation and Migration. Geochimica et Cosmochimica Acta, 2001, 65(15): 2555-2570.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/