PDF
Abstract
We present a case study of applying MT (magnetotellurics) and CSAMT (controlled source audio-frequency magnetotellurics) for geophysical exploration in Jiangxia (江夏), which is located in new industrial developing suburb, where artificial noises are severe. In order to know deep buried structure, fracture status, and characteristics of underground geothermal development about 2 km, we acquired MT and CSAMT data to image subsurface structure through inversion and joint interpretation. The electrical terms of the 2D MT inversion can be divided into three ranges of resistivity values: (1) a highly resistive (>350 Ω·m) layer mainly characteristic of limestone, dolomitic limestone, leuttrite, silicarenite, and packsand; (2) an intermediate resistivity (250–350 Ω·m) layer mainly constituted by siliceous shale, siltstone, battie, and ampelitic limestone; and (3) a low resistivity (20–250 Ω·m) layer, from surface to −100 m, which is related to lacustrine alluvium of Quaternary period; the deep low resistivity layer is interpreted to be representative of the geothermal field. The result of the 2D CSAMT inversion reveals two layers of different electrical resistivities: (1) the first resistive layer (20–250 Ω·m), which is related to lacustrine alluvium of Quaternary period and the heat source, and (2) the second resistive layer (250–3 000 Ω·m). The heat source appears to be bounded within the middle of exploration area and shows the N-S trend. Its depth ranges from more than 1.2 to less than 0.7 km, and its resistivity values range from 20 to 250 Ω·m in the northeast part of Jiangxia. Comparing the results of MT and CSAMT method, the positive anomalies are similar and can be assumed to be generated by the same source.
Keywords
MT method
/
CSAMT method
/
resistivity structure
/
geothermal field
Cite this article
Download citation ▾
Guiju Wu, Xiangyun Hu, Guangpu Huo, Xiaochen Zhou.
Geophysical exploration for geothermal resources: An application of MT and CSAMT in Jiangxia, Wuhan, China.
Journal of Earth Science, 2012, 23(5): 757-767 DOI:10.1007/s12583-012-0282-1
| [1] |
Arango C., Marcuello A., Ledo J., . 3D Magnetotelluric Characterization of the Geothermal Anomaly in the Llucmajor Aquifer System (Majorca, Spain). Journal of Applied Geophysics, 2009, 68(4): 479-488.
|
| [2] |
Bai D. H., Meju M. A., Liao Z. J.. Magnetotelluric Images of Deep Crustal Structure of the Rehai Geothermal Field near Tengchong, Southern China. Geophys. J. Int., 2001, 147(3): 677-687.
|
| [3] |
Bartel L. C., Jacobson R. D.. Results of a Controlled-Source Audiofrequency Magnetotelluric Survey at the Puhimau Thermal Area, Kilauea Volcano, Hawaii. Geophysics, 1987, 52(5): 665-677.
|
| [4] |
Bologna M. S., Padilha A. L., Vitorello I., . Signatures of Continental Collisions and Magmatic Activity in Central Brazil as Indicated by a Magnetotelluric Profile across Distinct Tectonic Provinces. Precambrian Research, 2011, 185(1–2): 55-64.
|
| [5] |
Bromley C.. Tensor CSAMT Study of the Fault Zone between Waikite and Te Kopia Geothermal Fields. Journal of Geomagnetism and Geoelectricity, 1993, 45(9): 887-896.
|
| [6] |
Cagniard L.. Basic Theory of the Magneto-Telluric Method of Geophysical Prospecting. Geophysics, 1953, 18(3): 605-635.
|
| [7] |
Garg S. K., Pritchett J. W., Wannamaker P. E., . Characterization of Geothermal Reservoirs with Electrical Surveys: Beowawe Geothermal Field. Geothermics, 2007, 36(6): 487-517.
|
| [8] |
Goldstein M. A., Strangway D. W.. Audio-Frequency Magnetotellurics with a Grounded Electric Dipole Source. Geophysics, 1975, 40(4): 669-683.
|
| [9] |
Harinarayana T., Abdul A. K. K., Murthy D. N., . Exploration of Geothermal Structure in Puga Geothermal Field, Ladakh Himalaya, India by Magnetotelluric Studies. Journal of Applied Geophysics, 2006, 58(4): 280-295.
|
| [10] |
Key K., Weiss C.. Adaptive Finite-Element Modeling Using Unstructured Grids: The 2D Magnetotelluric Example. Geophysics, 2006, 71(6): G291-G299.
|
| [11] |
Mogi T., Nakama S.. Magnetotelluric Interpretation of the Geothermal System of the Kuju Volcano, Southwest Japan. Journal of Volcanology and Geothermal Research, 1993, 56(3): 297-308.
|
| [12] |
Newman G. A., Gasperikova E., Hoversten G. M., . Three-Dimensional Magnetotelluric Characterization of the Coso Geothermal Field. Geothermics, 2008, 37(4): 369-399.
|
| [13] |
Park M. K., Seol S. J., Kim H. J.. Sensitivities of Generalized RRI Method for CSAMT Survey. Geosciences Journal, 2006, 10(1): 75-84.
|
| [14] |
Sandberg S. K., Hohmannt G. W.. Controlled-Source Audiomagnetotellurics in Geothermal Exploration. Geophysics, 1982, 47(1): 100-116.
|
| [15] |
Savin C., Ritz M., Join J. L., . Hydrothermal System Mapped by CSAMT on Karthala Volcano, Grande Comore Island, Indian Ocean. Journal of Applied Geophysics, 2001, 48(3): 143-152.
|
| [16] |
Sinharay R. K., Srivastava S., Bhattacharya B. B.. Audiomagnetotelluric Studies to Trace the Hydrological System of Thermal Fluid Flow of Bakreswar Hot Spring, Eastern India: A Case History. Geophysics, 2010, 75(5): B187-B195.
|
| [17] |
Smith J. T., Booker J. R.. Rapid Inversion of Two and Three-Dimensional Magnetotelluric Data. J. Geophys. Res., 1991, 96(B3): 3905-3922.
|
| [18] |
Spichak V., Manzella A.. Electromagnetic Sounding of Geothermal Zones. Journal of Applied Geophysics, 2009, 68(4): 459-478.
|
| [19] |
Unsworth M.. Magnetotelluric Studies of Active Continent-Continent Collisions. Surveys in Geophysics, 2010, 31(2): 137-161.
|
| [20] |
Volpi G., Manzella A., Fiordelisi A.. Investigation of Geothermal Structures by Magnetotellurics (MT): An Example from the Mt. Amiata Area, Italy. Geothermics, 2003, 32(2): 131-145.
|
| [21] |
Vozoff K.. Nabighian M. N.. The Magnetotelluric Method. Electromagnetic Methods in Applied Geophysics: Applications (Vol. 2), 1991, Tulsa: Society of Exploration Geophysicists 641 712
|
| [22] |
Wannamaker P. E.. Tensor CSAMT Survey over the Sulphur Springs Thermal Area, Valles Caldera, New Mexico, U.S.A., Part I: Implications for Structure of the Western Caldera. Geophysics, 1997, 62: 451-465.
|
| [23] |
Wannamaker P. E.. Tensor CSAMT Survey over the Sulphur Springs Thermal Area, Valles Caldera, New Mexico, U.S.A., Part II: Implications for CSAMT Methodology. Geophysics, 1997, 62: 466-476.
|
| [24] |
Zhu Q. J., Li F. Z., Wang X.. Forward Modeling for the Static Effect of AMT and the Resolution of Conductive Folia. Geophysical & Geochemical Exploration, 2009, 33(2): 207-211.
|