Orbital cycles analysis and its genesis significance for the sequence hierarchy: A case study of Carboniferous Karashayi Formation, Central Tarim basin

Zhanhong Liu

Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (4) : 516-528.

Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (4) : 516-528. DOI: 10.1007/s12583-012-0272-3
Article

Orbital cycles analysis and its genesis significance for the sequence hierarchy: A case study of Carboniferous Karashayi Formation, Central Tarim basin

Author information +
History +

Abstract

The Carboniferous Karashayi (卡拉沙依) Formation of Tarim basin formed in the epicontinental sea shelf environment where the evolution of basins is pediocratic. As an important reservoir-forming combination, the Carboniferous Karashayi Formation consist of clastic rocks, carbonate rocks and gypsum rocks, which show clear sedimentary cyclicity. According to paleontology research and stratigraphic correlation, Karashayi Formation corresponds to Visean and Serpukhovian in international stratigraphic chart with a time limit about ±27 Ma. The sequence stratigraphic study for the Karashayi Formation is rough because of the difficulty to identify the unconformity surfaces. The current study mostly divides it into three or four 3rd sequences. However, this partition cannot meet the geological crossing correlation. At the theory aspect of sequence stratigraphy, the genesis of the 3rd sequence is also a disputed problem. Cyclostratigraphy study of the Natural Gamma-Ray Log, Spontaneous Potential Log and other logging curves has been taken out by spectrum analysis and wavelet analysis, etc.. For Well Shun6 and Well Zhong1 in Tazhong (塔中) and neighbouring area, combined core observation and base level analysis, the Karashayi Formation was divided into 9 or 11 sequence stratigraphic units. Continuous constraints of each sequence is about ±2.40 Ma, corresponding to astronomical cycle formed by three parameters of Earth orbit. Accompanied by the historical division of 3rd sequences, the formation mechanism of 3rd sequences was possibly forced by the 2.4 Ma astro-nomical eccentricity cycles.

Keywords

Tarim / Karashayi Formation / stratigraphic sequence / cyclostratigraphy

Cite this article

Download citation ▾
Zhanhong Liu. Orbital cycles analysis and its genesis significance for the sequence hierarchy: A case study of Carboniferous Karashayi Formation, Central Tarim basin. Journal of Earth Science, 2012, 23(4): 516‒528 https://doi.org/10.1007/s12583-012-0272-3

References

Berger A.. The Milankovitch Astronomical Theory of Paleoclimates: A Modern Review. Vistas in Astronomy, 1980, 24(2): 103-122.
CrossRef Google scholar
Berger A.. Milankovitch Theory and Climate. Reviews of Geophysics, 1988, 26(4): 624-657.
CrossRef Google scholar
Berger A., Loutre M. F.. de Boer P. L., Smith D. G.. Astronomical Forcing through Geological Time. Orbital Forcing and Cyclic Sequences, 1994, Oxford: Blackwell Scientific Publications 15 24
Berger A., Loutre M. F., Laskar J.. Stability of the Astronomical Frequencies over the Earth’s History for Paleoclimate Studies. Science, 1992, 255(5044): 560-566.
CrossRef Google scholar
Berger A., Loutre M. F., Dehant V.. Influence of the Changing Lunar Orbit on the Astronomical Frequencies of Pre-Quaternary Insolation Patterns. Palaeoceanography, 1989, 4(5): 555-564.
CrossRef Google scholar
de Boer P. L., Smith D. G... Orbital Forcing and Cyclic Sequences, 1994, Oxford: Blackwell 1 559
CrossRef Google scholar
Doyle P., Bennett M. R.. Unlocking the Stratigraphical Record—Advances in Modern Stratigraphy, 1998, Chichester: John Wiley & Sons Ltd. 1 532
Fan H. Y., Chen W., Liu B. C.. Kalashayi Formation Reserve and Comprehensive Evaluation in Tahe Oil Field. Xinjiang Geology, 2004, 22(4): 417-421.
Gong Y. M., Xu R., Tang Z. D., . The Cyclostratigraphy and the Conodont Dating. Science in China (Ser. D), 2004, 34(7): 635-643.
Gradstein F., Ogg J., Smith A.. A Gedogic Time Scale, 2004, Cambridge: Cambridge University Press
CrossRef Google scholar
Gu J. Y., Zhang X. Y., Guo B. C.. Characteristics of Sedimentation and Reservoir of the Donghe Sandstone in Tarim Basin and Their Synthetic Analysis. Journal of Palaeogeography, 2006, 8(3): 285-294.
Guo Q. J., Zhao X. M.. Depositional Characteristics of Carboniferous in Tahe Region. Oil & Gas Geology, 2002, 23(1): 99-102.
Hays J. D., Imbrie J., Shackleton N. J.. Variations in the Earth’s Orbit: Pacemaker of the Ice Age. Science, 1976, 194(4270): 1121-1132.
CrossRef Google scholar
He F. Q., Zhai X. X., Yu R. L., . Deposition and Genetic Analysis of Carboniferous Kalashayi Formation in Tahe Oilfield. Oil & Gas Geology, 2004, 25(3): 258-262.
Herbert T. D., Mayer L. A.. Long Climatic Time Series from Sediment Physical Property Measurements. Journal of Sedimentary Petrology, 1991, 61(7): 1089-1108.
Hilgen F. J., Krijgaman W., Langereis C. G., . Breakthrough Made in Dating of the Geological Records. EOS, 1997, 78(28): 288-289.
CrossRef Google scholar
Hinnov L. A.. New Perspectives on Orbitally Forced Stratigraphy. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 419-475.
CrossRef Google scholar
Huang Z. B., Du P. D., Zhang S. B., . Revision of the Carboniferous Kalashayi Formation of the Tarim Basin. Journal of Stratigraphy, 2005, 29(1): 55-70.
International Commission on Stratigraphy (ICS), 2008. Geologic Time Scale. International Commission on Stratigraphy. http://www.stratigraphy.org
Jia C. Z.. The Structure Characteristics of Tarim Basin, China, 1997, Beijing: Petroleum Industry Press
Jia C. Z., Wei G. Q.. The Structure Feature and Hydrocarbon Bearing of Tarim Basin. Chinese Science Bulletin, 2002, 47(Suppl.): 1-8.
CrossRef Google scholar
Laskar J.. The Limits of Earth Orbital Calculations for Geological Time-Scale Use. Philos. Trans. Royal Soc. London, 1999, 357(1757): 1735-1759.
Liu C. S., Guo J. H.. The Clastic Reservoir Rocks from the Kalashayi Formation on the Akkol Uplift of the Tarim Basin, Xinjiang. Sedimentary Geology and Tethyan Geology, 2005, 25(3): 68-73.
Markello J. R., Koepnick R. B., Waite L. E., . Lukasik J., Simo T., . The Carbonate Analogs through Time (CATT) Hypothesis and the Global Atlas of Carbonate Fields—A Systematic and Predictive Look at Phanerozoic Carbonate Reservoirs. Controls on Carbonate Platform and Reef Development, 2006, Houston: SEPM Special Pulication
Mitchell R. N., Bice D. M., Montanari A., . Oceanic Anoxic Cycles? Orbital Prelude to the Bonarelli Level (OAE2). Earth and Planetary Science Letters, 2008, 267(1–2): 1-16.
CrossRef Google scholar
Muller R. A., Macdonald G. J.. Ice Ages and Astronomical Causes, 2000, Chichester: Praxis Publishing 1 318
Paillard D., Labeyrie L., Yiou P.. Macintosh Program Performs Time-Series Analysis. EOS, 1996, 77 39 379
CrossRef Google scholar
Prokoph A., Villeneuve M., Agterberg F. P.. Geochronology and Calibration of Global Milankovitch Cyclicity at the Cenomanian-Turonian Boundary. Geology, 2001, 29(6): 523-526.
CrossRef Google scholar
Rio D., Silva L. P., Capraro L.. The Geological Time Scale and the Italian Stratigraphic Record. Episodes, 2003, 26(3): 259-263.
Song S. L., Zhang C. D., Wang Q.. The Characteristics and Distribution of the Hydrocarbon Reservoirs in the Carboniferous Karashayi Formation, Tahe Oil Field, Xinjiang. Sedimentary Geology and Tethyan Geology, 2002, 22(2): 53-57.
Thomson D. J.. Spectrum Estimation and Harmonic Analysis. Proc. IEEE, 1982, 70(9): 1055-1096.
CrossRef Google scholar
Wang D. Y., Bai Y. Y., Jia C. Z.. Stable Isotopic Geochemistry of the Carboniferous Marine Carbonates in the Tarim Basin. Petroleum Exploration and Development, 2001, 28(6): 38-41.
Wang P. X.. Astronomical “Pendulum” for Geological Clock. Marine Geology & Quaternary Geology, 2006, 26(1): 1-7.
Wang Y.. Sedimentary Evolution of Late Devonian to Carboniferous Period in Tarim Basin. Journal of the University of Petroleum, China, 1998, 22(6): 14-20.
Weedon G. P.. Time-Series Analysis and Cyclostratigraphy, 2003, Cambridge: Cambridge University Press 1 259
CrossRef Google scholar
Wei F. J., He F. Q., Pu R. H.. Petrophysics and Evaluation of the Kalashayi Formation, Tahe Oil Field. Petroleum Geology & Expeximent, 2004, 26(4): 344-358.
Wu H. C., Zhang S. H., Huang Q. H.. Establishment of Floating Astronomical Time Scale for the Terrestrial Late Cretaceous Qingshankou Formation in the Songliao Basin of Northeast China. Earth Science Frontiers, 2008, 15(4): 159-169.
CrossRef Google scholar
Xu J., He Z. L., Guo J. H.. Sqeuence Stratigraphy and Sedimentry System of Kalashayi Formation Sandy Mudstone Member. Xinjiang Geology, 2009, 27(2): 155-159.
Yan X. B., Li Y. H.. Division and Lateral Prediction of Carboniferous Sand in Tahe Oilfield. Progress in Exploration Geophysics, 2002, 25(5): 36-51.
Zhang S. B., Huang Z. B., Du P. D., . Zhou X. Y., Wang Z. M., . Research Progress of Carboniferous to Permian Division and Correlation. The 20 Anniversary Symposium of the Oilfield Battle in Tarim Basin (Exploration Fascicule), 2009, Beijing: Petroleum Industry Press 127
Zhang S. B., Huang Z. B., Zhu H. C., . The Phanerozoic Stratigraphy in Tarim Basin, 2004, Beijing: Petroleum Industry Press 26
Zhao X. Q., Zhang Z. S., Li H. W.. Sequence Stratigraphy and Petrofacies Palaeogeography of Carboniferous System in the Tarim Basin. Oil Geophysical Prospecting, 1995, 15(3): 533-545.
Zhu H. C.. Carboniferous Miospore Zonation in China. Acta Micropalaeontologica Sinica, 2001, 18(1): 48-54.
Zhu H. C.. Discovery of Late Devonian Spores from the Southwestern Margin of Tarim Basin and Their Significance. Journal of Stratigraphy, 1996, 20(4): 252-256.
Zhu H. C., Zhao Z. X.. Advances on Studies of Devonoan-Carboniferous Sporopollen in Tarim Basin. Xinjiang Petroleum Geology, 1999, 20(3): 248-251.
Zhu H. C., Zhao Z. X., Liu J. J.. Discovery of the Earliest Carboniferous Spores from the Tarim Basin. Journal of Stratigraphy, 1998, 22(4): 295-298.
Zhu R. H., Luo P., Luo Z.. Lithofacies Palaeogeography of the Late Devonian and Carboniferous in Tarim Basin. Journal of Palaeogeography, 2002, 4(1): 13-24.

Accesses

Citations

Detail

Sections
Recommended

/