Geochemical characteristics and petrogenesis of Permian basaltic rocks in Keping area, Western Tarim basin: A record of plume-lithosphere interaction

Junchuan Yu , Xuanxue Mo , Xuehui Yu , Guochen Dong , Qiang Fu , Fengcun Xing

Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (4) : 442 -454.

PDF
Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (4) : 442 -454. DOI: 10.1007/s12583-012-0267-0
Article

Geochemical characteristics and petrogenesis of Permian basaltic rocks in Keping area, Western Tarim basin: A record of plume-lithosphere interaction

Author information +
History +
PDF

Abstract

The two basalt flows in Kupukuziman (库普库兹满) Formation of Keping (柯坪) area are the typical products of Permian magmatism. Based on systematic field investigations, we carried out geochemical studies on representative Keping basalts. The results show that the SiO2 contents in basalts range from 44.69 wt.% to 51.68 wt.%, and the total alkalis range from 4.05 wt.% to 5.5 wt.%, belonging belonging to alkaline basalts. The Ti/Y=468.27–565.35 and TiO2=(2.88–3.82) wt.% compared to those of the high-Ti basalts in Emeishan (峨眉山) large igneous province (LIP) (TiO2=(3.58–5.21) wt.%, Ti/Y>500, Xiao et al., 2004). The contents of MgO and compatible elements Cr (12.9–18.6 ppm), Ni (13.7–22.7 ppm), and Co (39.6–50.2 ppm) are low, which suggest that the samples have undergone varying grades of fractional crystallization. All the samples have uniform REE and other trace element characteristics, with enriched LREE and LILE relative to HREE and HFS, similar REE patterns without Eu anomaly. The basalts are also show slightly depleted of Ta and Nb. They have higher initial 87Sr/86Sr ratios (0.707 211–0.708 300), lower ɛ Nd(t) values (−2.47 to −4.14), and a narrow range of (208Pb/204Pb)t=37.535 2–38.297 7, (207Pb/204Pb)t=15.435 7–15.517 0, and (206Pb/204Pb)t=17.206 5–17.874 7 ratios. The Ce/Y versus Zr/Nb diagram shows that the parent magmas were originated from low-degree partial melting of the garnet-lherzolite. The analysis results based on geochemical studies seem all point to the same conclusion that the Keping basalts have formed as a product of the interaction between the plume-derived melts and the lithosphere.

Keywords

Tarim basin / Permian / large igneous province / mantle plume / geochemical characteristics

Cite this article

Download citation ▾
Junchuan Yu, Xuanxue Mo, Xuehui Yu, Guochen Dong, Qiang Fu, Fengcun Xing. Geochemical characteristics and petrogenesis of Permian basaltic rocks in Keping area, Western Tarim basin: A record of plume-lithosphere interaction. Journal of Earth Science, 2012, 23(4): 442-454 DOI:10.1007/s12583-012-0267-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arth J. G., Va R.. Behavior of Trace Elements during Magmatic Processes—A Summary of Theoretical Models and Their Applications. Journal of Research of the U.S. Geological Survey, 1976, 4(1): 41-47.

[2]

Boynton W. V.. Henderson P.. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. Rare Earth Element Geochemistry, 1984, Amsterdam: Elsevier 63 114

[3]

Campbell I. H., Czamanske G. K., Fedorenko V. A., . Synchronism of the Siberian Traps and the Permian-Triassic Boundary. Science, 1992, 258(5089): 1760-1763.

[4]

Chauvet F., Lapierre H., Bosch D., . Geochemistry of the Panjal Traps Basalts (NW Himalaya): Records of the Pangea Permian Break-Up. Bulletin de la Société Géologique de France, 2008, 179(4): 383-395.

[5]

Chen H. L., Yang S. F., Wang Q. H., . Sedimentary Response to the Early-Mid Permian Basaltic Magmatism in the Tarim Plate. Geology in China, 2006, 33(3): 545-552.

[6]

Chung S. L., Jahn B. M.. Plume-Lithosphere Interaction in Generation of the Emeishan Flood Basalts at the Permian-Triassic Boundary. Geology, 1995, 23(10): 889-892.

[7]

Deng J. F.. Petrographical Facies Equilibrium and Petrogenesis, 1987, Wuhan: Wuhan College of Geology Press

[8]

Deniel C.. Geochemical and Isotopic (Sr, Nd, Pb) Evidence for Plume-Lithosphere Interaction in the Genesis of Grande Comore Magmas (Indian Ocean). Chemical Geology, 1998, 144(3): 281-303.

[9]

Frey F. A., Weis D., Borisova A. Y., . Involvement of Continental Crust in the Formation of the Cretaceous Kerguelen Plateau: New Perspectives from ODP Leg 120 Sites. Journal of Petrology, 2002, 43(7): 1207-1239.

[10]

Gao S., Liu X. M., Yuan H. L., . Determination of Forty-Two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards Newsletter—Journal of Geostandards and Geoanalysis, 2002, 26(2): 181-196.

[11]

Halama R., Wenzel T., Upton B. G. J., . A Geochemical and Sr-Nd-O Isotopic Study of the Proterozoic Eriksfjord Basalts, Gardar Province, South Greenland: Reconstruction of an OIB Signature in Crustally Contaminated Rift-Related Basalts. Mineralogical Magazine, 2003, 67(5): 831-853.

[12]

Jiang C. Y., Li Y. Z., Zhang P. B., . Petrogenesis of Permian Basalts on the Western Margin of the Tarim Basin, China. Russian Geology and Geophysics, 2006, 47(2): 237-248.

[13]

Jiang C. Y., Zhang P. B., Lu D. R., . Petrology, Geochemistry and Petrogenesis of the Kalpin Basalts and Their Nd, Sr and Pb Isotopic Compositions. Geological Review, 2004, 50(5): 492-500.

[14]

Lightfoot P. C., Hawkesworth C. J., Hergt J., . Remobilisation of the Continental Lithosphere by a Mantle Plume: Major, Trace-Element, and Sr, Nd and Pb Isotope Evidence from Picritic and Tholeiitic Lavas of the Noril’sk District, Siberian Trap, Russia. Contrib. Mineral. Petrol., 1993, 114: 171-188.

[15]

Liu C. Y., Zhu R. X.. Geodynamic Significances of the Emeishan Basalts. Earth Science Frontiers, 2009, 16(2): 52-69.

[16]

Lu S. N., Li H. K., Zhang C. L., . Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments. Precambrian Research, 2008, 160: 94-107.

[17]

Ludden J. N., Thompson G.. Behavior of Rare Earth Elements during Submarine Weathering of Tholeiitic Basalts. Nature, 1978, 274: 147-149.

[18]

Neal C. R., Mahoney J., Chazey W. J.. Mantle Sources and the Highly Variable Role of Continental Lithosphere in Basalt Petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: Results from ODP Leg 183. Journal of Petrology, 2002, 43(7): 1177-1205.

[19]

Pearce J. A.. Thorpe R. S.. Trace Elements Characteristic of Lavas from Destructive Plate Boundaries. Andesites, 1982, New York: Wiley 525 548

[20]

Pearce J. A., Cann J. R.. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 1973, 19(2): 290-300.

[21]

Peng Z. X., Mahoney J., Hooper P., . A Role for Lower Continental Crust in Flood Basalt Genesis? Isotopic and Incompatible Element Study of the Lower Six Formations of the Western Deccan Traps. Geochim. Cosmochim. Acta, 1994, 58(1): 267-288.

[22]

Reichow M. K., Pringle M. S., Al’Mukhamedov A. I., . The Timing and Extent of the Eruption of the Siberian Traps Large Igneous Province: Implications for the End-Permian Environmental Crisis. Earth and Planetary Science Letters, 2009, 277: 9-20.

[23]

Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R. L., ed., The Crust. Treatise on Geochemistry, 3: 1–64, doi:10.1016/B0-08-043751-6/03016-4

[24]

Steiger R. H., Jager E.. Subcommision on Geochronology: Convention on the Use of Decay onstants in Geo- and Cosmo-chronology. Earth and Planetary Science Letters, 1977, 36(3): 359-362.

[25]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalt: Implication for Mantle Composition and Processes. In: Saunders, A. D., Norry, M. J., eds., Magmatism in the Ocean Basin. Geological Society of London Special Publication, 42: 313–345

[26]

Thompson R. N., Morrison M. A., Hendry G. L., . An Assessment of the Relative Roles of Crust and Mantle in Magma Genesis: An Elemental Approach. Philosophical Transactions of the Royal Society of London, Series A, 1984, 310(1514): 549-590.

[27]

Vannay, J. C., Spring, L., 1993, Geochemistry of the Continental Basalts within the Tethyan Himalaya of Lahul-Spiti and SE Zanskar (NW India). In: Treloar, P. J., Searle, M. P., eds., Himalayan Tectonics. The Geological Society of London, Special Publication, 74: 237–249

[28]

Winchester J. A., Floyd P. A.. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 1977, 20: 325-343.

[29]

Xiao L., Xu Y. G., Mei H. J., . Distinct Mantle Sources of Low-Ti and High-Ti Basalts from the Western Emeishan Large Igneous Province, SW China: Implications for Plume-Lithosphere Interaction. Earth and Planetary Science Letters, 2004, 228: 525-546.

[30]

Xu Y. G., Chung S. L., Jahn B. M., . Petrological and Geochemical Constraints on the Petrogenesis of Permo-Triassic Emeishan Flood Basalts in Southwestern China. Lithos, 2001, 58: 145-168.

[31]

Xu Y. G., He B., Chung S. L., . Geologic, Geochemical, and Geophysical Consequences of Plume Involvement in the Emeishan Flood-Basalt Province. Geology, 2004, 32(10): 917-920.

[32]

Yang S. F., Chen H. L., Dong C. W., . The Discovery of Permian Syenite inside Tarim Basin and Its Geodynamic Significance. Geochemical, 1996, 25(2): 121-128.

[33]

Yang S. F., Chen H. L., Ji D. W., . Geological Process of Early to Middle Permian Magmatism in Tarim Basin and Its Geodynamic Significance. Geological Journal of China Universities, 2005, 11(4): 504-511.

[34]

Yang S. F., Li Z. L., Chen H. L., . Discovery of a Permian Quartz Syenitic Porphyritic Dyke from the Tarim Basin and Its Tectonic Implications. Acta Petrologica Sinica, 2006, 22(5): 1405-1412.

[35]

Yang S. F., Li Z. L., Chen H. L., . 40Ar-39Ar Dating of Basalts from Tarim Basin, NW China and Its Implication to a Permian Thermal Tectonic Event. Journal of Zhejiang University Science, 2006, 7(Suppl.II): 320-324.

[36]

Yang S. F., Li Z. L., Chen H. L., . Permian Bimodal Dyke of Tarim Basin, NW China: Geochemical Characteristics and Tectonic Implications. Gondwana Research, 2007, 12: 113-120.

[37]

Yu J. C., Mo X. X., Dong G. C., . Felsic Volcanic Rocks from Northern Tarim, NW China: Zircon U-Pb Dating and Geochemical Characteristics. Acta Petrologica Sinica, 2011, 27(7): 2184-2194.

[38]

Yu X., Yang S. F., Chen H. L., . Permian Flood Basalts from the Tarim Basin, Northwest China: SHRIMP Zircon U-Pb Dating and Geochemical Characteristics. Gondwana Research, 2011, 20(2–3): 485-497.

[39]

Zhang C. L., Li X. H., Li Z. X., . A Permian Layered Intrusive Complex in the Western Tarim Block, Northwestern China: Product of a ca. 275-Ma Mantle Plume?. The Journal of Geology, 2008, 116: 269-287.

[40]

Zhang H. F., Gao S., Zhong Z. Q., . Geochemical and Sr-Nd-Pb Isotopic Compositions of Cretaceous Granitoids: Constraints on Tectonic Framework and Crustal Structure of the Dabieshan Ultrahigh Pressure-Metamorphic Belt, China. Chemical Geology, 2002, 186: 281-299.

[41]

Zhang Z. C., Guo Z. J., Liu S. W.. Age and Tectonic Significance of the Mafic Dyke Swarm in the Kuruketag Region, Xinjiang. Acta Geologica Sinica, 1998, 72(1): 29-36.

[42]

Zhang Z. C., Mao J. W., Andrew D. S., . Petrogenetic Modeling of Three Mafic-Ultramafic Layered Intrusions in the Emeishan Large Igneous Province, SW China, Based on Isotopic and Bulk Chemical Constraints. Lithos, 2009, 113: 369-392.

[43]

Zhang Z. C., Wang F. S.. Sr, Nd and Pb Isotopic Characteristics of Emeishan Basalt Province and Discussion on Their Source Region. Earth Science—Journal of China University of Geosciences, 2003, 28(4): 431-439.

[44]

Zhou M. F., Malpas J., Song X. Y., . A Temporal Link between the Emeishan Large Igneous Province (SW China) and the End-Guadalupian Mass Extinction. Earth and Planetary Science Letters, 2002, 196: 113-122.

[45]

Zhu D. C., Mo X. X., Pan G. T., . Petrogenesis of the Earliest Early Cretaceous Mafic Rocks from the Cona Area of the Eastern Tethyan Himalaya in South Tibet: Interaction between the Incubating Kerguelen Plume and the Eastern Greater India Lithosphere?. Lithos, 2008, 100: 147-173.

[46]

Zhu D. C., Wang L. Q., Pan G. T., . Discrimination of OIB-Type Magma and Significances of Basalts from Middle Jurassic Zhela Formation in the Central Belt of Tethyan Himalayas, South Tibet. Geological Science and Technology Information, 2004, 23(3): 15-24.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/