Petroleum charging and leakage in the BZ25-1 field, Bohai Bay basin

Fang Hao , Xinhuai Zhou , Huayao Zou , Changyu Teng , Yuanyuan Yang

Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (3) : 253 -267.

PDF
Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (3) : 253 -267. DOI: 10.1007/s12583-012-0251-8
Article

Petroleum charging and leakage in the BZ25-1 field, Bohai Bay basin

Author information +
History +
PDF

Abstract

This paper discusses origin and charging histories of the Bozhong (渤中) 25-1 field (BZ25-1) in the Bozhong sub-basin, Bohai (渤海) Bay basin. Petroleum is contained in both Paleogene and Neogene reservoirs in the BZ25-1 field. The origin of the field was studied using biomarker distributions for 61 source rock samples and 34 oil samples. Oil in the Paleogene reservoirs was derived from the third member (Es 3, 43.0–38.0 Ma in age) of the Eocene Shahejie (沙河街) Formation, whereas oil in the Neogene reservoirs was a mixtures of oil generated from the third member and the first member (Es 1, 35.8–32.8 Ma) of the Eocene Shahejie Formation. Charging of the shallow Neogene reservoirs was dynamic, probably ongoing, which was a combined result of the existence of active source rocks, the development of overpressure and the fault reactivation since about 5.1 Ma. On the contrary, the deep Paleogene reservoirs experienced intensive oil leakage as indicated by the high GOI (grains-containing-oil-inclusions) values (up to 30%) for samples below the present-day oil-water contact. Part of the oil that leaked from the Paleogene reservoirs re-accumulated in the shallow Neogene reservoirs. The variation of oil origins within the BZ25-1 field, and the dynamic petroleum charging into the shallow Neogene reservoirs and leakage from the deep Paleogene reservoirs have important implications for petroleum exploration.

Keywords

petroleum charge / oil leakage / source-rock correlation / Bohai Bay basin

Cite this article

Download citation ▾
Fang Hao, Xinhuai Zhou, Huayao Zou, Changyu Teng, Yuanyuan Yang. Petroleum charging and leakage in the BZ25-1 field, Bohai Bay basin. Journal of Earth Science, 2012, 23(3): 253-267 DOI:10.1007/s12583-012-0251-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alexander L. L., Handschy J. W.. Fluid Flow in a Faulted Reservoir System, South Eugene Island Block 330 Field, Offshore Louisiana. AAPG Bulletin, 1998, 82(3): 387-411.

[2]

Allen M. B., McDonald D. I. M., Zhao X., . Early Cenozoic Two-Phase Extension and Late Cenozoic Thermal Subsidence and Inversion of the Bohai Basin, Northern China. Marine and Petroleum Geology, 1997, 14(7–8): 951-972.

[3]

Allen, M. B., McDonald, D. I. M., Zhao, X., et al., 1998. Transtensional Deformation in the Evolution of the Bohai Basin, Northern China. In: Holdsworth, R. E., Strachan, R. A., Dewey, J. F., eds., Continental Transpression and Transtensional Tectonics. Geological Society (London) Special Publication, 135: 215–229

[4]

Anderson R. N., Flemings P., Losh S., . Gulf of Mexico Growth Fault Seen as Oil, Gas Migration Pathway. Oil & Gas Journal, 1994, 92(23): 97-104.

[5]

Brincat M., Gartrell A., Lisk M., . An Integrated Evaluation of Hydrocarbon Charge and Retention at the Griffin, Chinook, and Scindian Oil and Gas Fields, Barrow Sub-Basin, North West Shelf, Australia. AAPG Bulletin, 2006, 90(9): 1359-1380.

[6]

Chen J. Y., Li S. F., Xiong Y., . Multiple Petroleum Systems in Tertiary Extentional Basins, East China: A Case Study of the Gunan-Fulin Basin. Journal of Petroleum Geology, 1998, 21(1): 105-118.

[7]

Chen J. Y., Bi Y. P., Zhang J. G., . Oil-Source Correlation in the Fulin Basin, Shengli Petroleum Province, East China. Organic Geochemistry, 1996, 24(8–9): 931-940.

[8]

Cosgrove J. W.. Hydraulic Fracturing during the Formation and Deformation of a Basin: A Factor in the Dewatering of Low-Permeability Sediments. AAPG Bulletin, 2001, 85(4): 737-748.

[9]

Curiale J. A., Bromley B. W.. Migration of Petroleum into Vermilion 14 Field, Gulf Coast, USA-Molecular Evidence. Organic Geochemistry, 1996, 24(5): 563-579.

[10]

de Leeuw J. W., Rijpstra W. I. C., Schenck P. A., . Free, Esterified and Residual Bound Sterols in Black Sea Unit-1 Sediments. Geochimica et Cosmochimica Acta, 1983, 47(3): 455-465.

[11]

Dzou L. I. P., Hughes W. B.. Geochemistry of Oils and Condensates, K Field, Offshore Taiwan: A Case Study in Migration Fractionation. Organic Geochemistry, 1993, 20(4): 437-462.

[12]

Gartrell A., Bailey W. R., Brincat M.. A New Model for Assessing Trap Integrity and Oil Preservation Risks Associated with Postrift Fault Reactivation in the Timor Sea. AAPG Bulletin, 2006, 90(12): 1921-1944.

[13]

Gartrell A., Zhang Y., Lisk M., . Enhanced Hydrocarbon Leakage at Fault Intersections: An Example from the Timor Sea, Northwest Shelf, Australia. Journal of Geochemical Exploration, 2003, 78–79(SI): 361-365.

[14]

George S. C., Volk H., Ahmed M.. Geochemical Analysis Techniques and Geological Applications of Oil-Bearing Fluid Inclusions, with Some Australian Case Studies. Journal of Petroleum Science and Engineering, 2007, 57(1–2): 119-138.

[15]

George S. C., Lisk M., Eadington P. J.. Fluid Inclusion Evidence for an Early, Marine-Sourced Oil Charge Prior to Gas-Condensate Migration, Bayu-1, Timor Sea, Australia. Marine and Petroleum Geology, 2004, 21: 1107-1128.

[16]

Gonçalves F. T. T.. Organic and Isotope Geochemistry of the Early Cretaceous Rift Sequence in the Camamu Basin, Brazil: Paleolimnological Inferences and Source Rock Models. Organic Geochemistry, 2002, 33: 67-80.

[17]

Gong Z. S.. Giant Offshore Oil and Gas Fields in China, 1997, Beijing: Petroleum Industry Press 396

[18]

Gong Z. S.. Neotectonics and Petroleum Accumulation in Offshore Chinese Basins. Earth Science-Journal of China University of Geosciences, 2004, 29(5): 513-517.

[19]

Grantham P. J., Wakefield L. L.. Variations in the Sterane Carbon Number Distributions of Marine Source Rock Derived Crude Oils through Geological Times. Organic Geochemistry, 1988, 12(1): 61-77.

[20]

Hanson A. D., Ritts B. D., Zinniker D., . Upper Oligocene Lacustrine Source Rocks and Petroleum Systems of the Northern Qaidam Basin, Northwest China. AAPG Bulletin, 2001, 85(4): 601-619.

[21]

Hao F., Zhou X. H., Zhu Y. M., . Charging of Oil Fields Surrounding the Shaleitian Uplift from Multiple Source Rock Intervals and Generative Kitchens, Bohai Bay Basin, China. Marine and Petroleum Geology, 2010, 27: 1910-1926.

[22]

Hao F., Zhou X. H., Zhu Y. M., . Lacustrine Source Rock Deposition in Response to Co-Evolution of Environments and Organisms Controlled by Tectonic Subsidence and Climate, Bohai Bay Basin, China. Organic Geochemistry, 2011, 42: 323-339.

[23]

Hao F., Zhang Z. H., Zou H. Y., . Origin and Mechanism of the Formation of the Low-Oil-Saturation Moxizhuang Field, Junggar Basin, China: Implication for Petroleum Exploration in Basins Having Complex Histories. AAPG Bulletin, 2011, 95(6): 983-1008.

[24]

Hao F.. Kinetics of Hydrocarbon Generation and Mechanisms of Petroleum Accumulation in Overpressured Basins, 2005, Beijing: Science Press 406

[25]

Hao F., Zou H. Y., Gong Z. S., . Petroleum Migration and Accumulation in the Bozhong Sub-Basin, Bohai Bay Basin, China: Significance of Preferential Petroleum Migration Pathways (PPMP) for the Formation of Large Oilfields in Lacustrine Fault Basins. Marine and Petroleum Geology, 2007, 24: 1-13.

[26]

Hao F., Zou H. Y., Gong Z. S., . Hierarchies of Overpressure Retardation of Organic Matter Maturation: Case Studies from Petroleum Basins in China. AAPG Bulletin, 2007, 91(10): 1467-1498.

[27]

Hao F., Zhou X. H., Zhu Y. M., . Charging of the Neogene Penglai 19-3 Field, Bohai Bay Basin, China: Oil Accumulation in a Young Trap in an Active Fault Zone. AAPG Bulletin, 2009, 93(2): 155-179.

[28]

Hao F., Zhou X. H., Zhu Y. M., . Mechanisms for Oil Depletion and Enrichment on the Shijiutuo Uplift, Bohai Bay Basin, China. AAPG Bulletin, 2009, 93(8): 1015-1037.

[29]

Hao F., Zhou X. H., Zhu Y. M., . Mechanisms of Petroleum Accumulation in the Bozhong Sub-Basin, Bohai Bay Basin, China. Part 1: Origin and Occurrence of Crude Oils. Marine and Petroleum Geology, 2009, 26: 1528-1542.

[30]

Hao F., Sun Y. C., Li S. T., . Overpressure Retardation of Organic-Matter Maturation and Hydrocarbon Generation: A Case Study from the Yinggehai and Qiongdongnan Basins, Offshore South China Sea. AAPG Bulletin, 1995, 79: 551-562.

[31]

Hao F., Li S. T., Gong Z. S., . Thermal Regime, Inter-Reservoir Compositional Heterogeneities, and Reservoir-Filling History of the Dongfang Gas Field, Yinggehai Basin, South China Sea: Evidence for Episodic Fluid Injections in Overpressured Basins?. AAPG Bulletin, 2000, 84(5): 607-626.

[32]

Hao F., Li S. T., Sun Y. C., . Geology, Compositional Heterogeneities and Geochemical Origin of the Yacheng Gas Field in the Qiongdongnan Basin, South China Sea. AAPG Bulletin, 1998, 82: 1372-1384.

[33]

Holba A. G., Dzou L. I. P., Hickey J. J., . Reservoir Geochemistry of South Pass 61 Field, Gulf of Mexico: Compositional Hetrogeneities Reflecting Filling History and Biodegradation. Organic Geochemistry, 1996, 24: 1179-1198.

[34]

Holba A. G., Dzou L. I., Wood G. D.. Application of Tetracyclic Polyprenoids as Indicators of Input from Fresh-Brackish Water Environments. Organic Geochemistry, 2003, 34: 441-469.

[35]

Hsiao L. Y., Graham S. A., Tilander N.. Stratigraphy and Sedimentation in a Rift Basin Modified by Synchronous Strike-Slip Deformation: Southern Xialiao Basin, Bohai, Offshore China. Basin Research, 2010, 22(1): 61-78.

[36]

Huang H. P., Pearson J. M.. Source Rock Palaeoenvironments and Controls on the Distribution of Dibenzothiophenes in Lacustrine Crude Oils, Bohai Bay Basin, Eastern China. Organic Geochemistry, 1999, 30: 1455-1470.

[37]

Huang W. Y., Meinschein W. G.. Sterols as Ecological Indicators. Geochimica et Cosmochimica Acta, 1979, 43(5): 739-745.

[38]

Justwan H., Dahl B., Isaksen G. H.. Geochemical Characterization and Genetic Origin of Oils and Condensates in the South Viking Graben. Norway: Marine and Petroleum Geology, 2006, 23(2): 213-239.

[39]

Knoll A. H., Summons R. E., Waldbauer J. R., . Falkowski P., Knoll A. H., . The Geological Succession of Primary Producers in the Oceans. The Evolution of Primary Producers in the Sea, 2007, Boston: Academic Press 133 163

[40]

Lisk M., O’Brien G. W., Eadington P. J.. Quantitative Evaluation of the Oil-Leg Potential in the Oliver Gas Field, Timor Sea, Australia. AAPG Bulletin, 2002, 86(9): 1531-1542.

[41]

Losh S., Walter L., Meulbroek P., . Reservoir Fluids and Their Migration into the South Eugene Island Block 330 Reservoirs, Offshore Louisiana. AAPG Bulletin, 2002, 86(8): 1463-1488.

[42]

Lu K. Z., Qi J. F.. Structural Model for the Cenozoic Petroliferous Basins in the Bohai Bay, 1997, Beijing: Geological Publishing House 207

[43]

McKenzie D.. Some Remarks on the Development of Sedimentary Basins. Earth and Planetary Science Letters, 1978, 40(1): 25-32.

[44]

Palmer, S. E., 1991. Effect of Biodegradation and Water Washing on Crude Oil Composition. In: Merrill, R. K., ed., Source and Migration Processes and Evaluation Techniques. AAPG (Special), 47–54

[45]

Palmer S. E.. Engel M. H., Macko S. A.. Effect of Biodegradation and Water Washing on Crude Oil Composition. Organic Geochemistry, 1993, New York: Plenum 511 533

[46]

Peters K. E., Walters C. C., Moldowan J. M.. The Biomarker Guide (I), Interpreting Molecular Fossils, 1993, Englewood Cliffs, New Jersey: Prentice-Hall 363

[47]

Peters K. E., Walters C. C., Moldowan J. M.. The Biomarker Guide (II), Biomarkers and Isotopes in Petroleum Exploration and Earth History, 2005, Cambridge: Cambridge University Press 1155

[48]

Peters K. E., Hostettler F. D., Lorenson T. D., . Families of Miocene Monterey Crude Oil, Seep, and Tarball Samples, Coastal California. AAPG Bulletin, 2008, 92(9): 1131-1152.

[49]

Peters K. E., Ramos L. S., Zumberge J. E., . Circum-Arctic Petroleum Systems Identified Using Decision-Tree Chemometrics. AAPG Bulletin, 2007, 91(6): 877-913.

[50]

Qi J. F., Yang Q.. Cenozoic Structural Deformation and Dynamic Processes of the Bohai Bay Basin Province, China. Marine and Petroleum Geology, 2010, 27(4): 757-771.

[51]

Ritts B. D., Hanson A. D., Zinniker D., . Lower-Middle Jurassic Nonmarine Source Rocks and Petroleum Systems of the Northern Qaidam Basin, Northwest China. AAPG Bulletin, 1999, 83: 1980-2005.

[52]

Roberts S. J., Nunn J. A., Cathles L., . Expulsion of Abnormally Pressured Fluids along Faults. Journal of Geophysical Research, 1996, 101(B12): 28231-28252.

[53]

Sepúlveda J., Wendler J., Leider A., . Molecular Isotopic Evidence of Environmental and Ecological Changes across the Cenomanian-Turonian Boundary in the Levant Platform of Central Jordan. Organic Geochemistry, 2009, 40: 553-568.

[54]

Sibson R. H.. Brittle-Failure Controls on Maximum Sustainable Overpressure in Different Tectonic Regimes. AAPG Bulletin, 2003, 87(6): 901-908.

[55]

Sinninghe Damsté J. S., Kenig F., Koopmans M. P., . Evidence for Gammacerane as an Indicator of Water Column Stratification. Geochimica et Cosmochimica Acta, 1995, 59(9): 1895-1900.

[56]

Summons R. E., Hope J. M., Swart R., . Origin of Nama Basin Bitumen Seeps: Petroleum Derived from a Permian Lacustrine Source Rock Traversing Southwestern Gondwana. Organic Geochemistry, 2008, 39(5): 589-607.

[57]

ten Haven H. L., Rohmer M., Rullkotter J., . Tetrahymanol, the Most Likely Precursor of Gammacerane, Occurs Ubiquitously in Marine Sediments. Geochimica et Cosmochimica Acta, 1989, 53(11): 3073-3079.

[58]

Venkatesan M. I.. Tetrahymanol: Its Widespread Occurrence and Geochemical Significance. Geochimica et Cosmochimica Acta, 1989, 53(11): 3095-3101.

[59]

Volkman J. K.. A Review of Sterol Markers for Marine and Terrigenous Organic Matter. Organic Geochemistry, 1986, 9(2): 83-99.

[60]

Volkman J. K., Barrett S. M., Blackburn S. I., . Microalgal Biomarkers: A Review of Recent Research Developments. Organic Geochemistry, 1998, 29(5–7): 1163-1179.

[61]

Wenger L. M., Isaksen G. H.. Control of Hydrocarbon Seepage Intensity on Level of Biodegradation in Sea Bottom Sediments. Organic Geochemistry, 2002, 33(12): 1277-1292.

[62]

Whelan J. K., Kennicutt M. C. II, Brooks J. M., . Organic Geochemical Indicators of Dynamic Fluid Flow Process in Petroleum Basins. Organic Geochemistry, 1994, 22(3–5): 587-615.

[63]

Whelan J. K., Eglinton L., Kennicutt M. C. II, . Short-Time-Scale (Year) Variations of Petroleum Fluids from the U.S. Gulf Coast. Geochimica et Cosmochimica Acta, 2001, 65(20): 3529-3555.

[64]

Wilhelms, A., Larter, S., 2004. Shaken but not always Stirred. Impact of Petroleum Charge Mixing on Reservoir Geochemistry. In: Cubitt, J. M., England, W. A., Larter, S. R., eds., Understanding Petroleum Reservoirs: Towards an Integrated Reservoir Engineering and Geochemical Approach. Geological Society Special Publication, 237: 27–35, doi:10.1144/GSL.SP.2004.237.01.03

[65]

Yang Y. T., Xu T. G.. Hydrocarbon Habitat of the Offshore Bohai Basin, China. Marine and Petroleum Geology, 2004, 21(6): 691-708.

[66]

Ye H., Shedlock K. M., Hellinger S. J., . The North China Basin: An Example of a Cenozoic Rifted Intraplate Basin. Tectonics, 1985, 4(2): 153-169.

[67]

Zhang L. Y., Liu Q., Zhang C. R.. Study on the Genetic Relationships between Hydrocarbon Occurrence and Pool Formation in the Dongying Depression, 2005, Beijing.: Geological Publishing House 202

[68]

Zhang Y., Gartrell A., Underschultz J. R., . Numerical Modeling of Strain Localization and Fluid Flow during Extensional Fault Reactivation: Implications for Hydrocarbon Preservation. Journal of Structural Geology, 2009, 31(3): 315-327.

[69]

Zumberge J. E.. Prediction of Source Rock Characteristics Based on Terpane Biomarkers in Crude Oils: A Multivariate Statistical Approach. Geochimica et Cosmochimica Acta, 1987, 51(6): 1625-1637.

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/