Cleaning of marine sediment samples for large diatom stable isotope analysis

Zhifang Xiong , Tiegang Li , Xavier Crosta

Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (2) : 161 -172.

PDF
Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (2) : 161 -172. DOI: 10.1007/s12583-012-0241-x
Article

Cleaning of marine sediment samples for large diatom stable isotope analysis

Author information +
History +
PDF

Abstract

Diatom stable isotope analysis offers considerable potential in palaeoceanography, particularly where carbonate material is scarce or absent. However, extracting pure diatom frustules free of external labile organic matter from marine sediments is an essential requirement for their applications as paleoenvironmental proxies. Here, based largely on previous work, we developed a method including physical separation and chemical oxidation steps to concentrate and clean pure large diatoms from laminated diatom mat and diatomaceous clay sediment samples for their stable isotope analysis. Using the physical separation techniques consisting of the removal of carbonate and excess organic matter, sieving, differential settling, and heavy liquid floatation, pure diatoms can be successfully isolated from the sediment samples with opal concentration more than 10%. Subsequent time oxidation experiment shows that labile organic matter coating pure diatom valves can be effectively removed with 30% H2O2 at 65 °C for 2 h. Measurements of δ 13C after every step of physical separation demonstrate that contaminants and lost diatoms can influence the original diatom stable isotope signal, highlighting the importance of a visual check for dominant diatom size in the initial sample and purity in the final sample. Although the protocol described here was only applied to diatom mats or diatom oozes containing large diatoms (Ethmodiscus rex), we believe that this method can be adapted to common diatoms of general marine sediment samples.

Keywords

large diatom / stable isotope / physical separation / chemical oxidation / Parece Vela basin / palaeoceanography

Cite this article

Download citation ▾
Zhifang Xiong, Tiegang Li, Xavier Crosta. Cleaning of marine sediment samples for large diatom stable isotope analysis. Journal of Earth Science, 2012, 23(2): 161-172 DOI:10.1007/s12583-012-0241-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brunelle B. G., Sigman D. M., Cook M. S., . Evidence from Diatom-Bound Nitrogen Isotopes for Subarctic Pacific Stratification during the Last Ice Age and a Link to North Pacific Denitrification Changes. Paleoceanography, 2007, 22 PA1215

[2]

Coplen, T. B., Hopple, J. A., Böhlke, J. K., et al., 2002. Compilation of Minimum and Maximum Isotope Ratios of Selected Elements in Naturally Occurring Terrestrial Materials and Reagents. Report 01-4222. In: U.S. Geological Survey Water-Resources Investigations. Reston, Virginia. 19–29

[3]

Crosta X., Koç N.. Hilaire-Marcel C., De Vernal A.. Diatoms: From Micropaleontology to Isotope Geochemistry. Proxies in Late Cenozoic Paleoceanography, Developments in Marine Geology Series, 2007, Amsterdam: Elsevier 327 369

[4]

Crosta X., Shemesh A., Etourneau J., . Nutrient Cycling in the Indian Sector of the Southern Ocean over the Last 50 000 Years. Global Biogeochemical Cycles, 2005, 19 GB3007

[5]

Crosta X., Shemesh A., Salvignac M. E., . Late Quaternary Variations of Elemental Ratios (C/Si and N/Si) in Diatom-Bound Organic Matter from the Southern Ocean. Deep-Sea Research II, 2002, 49: 1939-1952.

[6]

De La Rocha C. L.. Opal-Based Isotopic Proxies of Paleoenvironmental Conditions. Global Biogeochemical Cycles, 2006, 20 GB4S09

[7]

Hatté C., Hodgins G., Jull A. J. T., . Marine Chronology Based on 14C Dating on Diatoms Proteins. Marine Chemistry, 2008, 109: 143-151.

[8]

Juillet-Leclerc, A., 1986. Cleaning Process for Diatomaceous Samples. In: Ricard, M., ed., Proceedings of the 8th International Diatom Symposium, Paris. 733–736

[9]

Kemp A. E. S., Pearce R. B., Grigorov I., . Production of Giant Marine Diatoms and Their Export at Oceanic Frontal Zones: Implications for Si and C Flux from Stratified Oceans. Global Biogeochemical Cycles, 2006, 20 GB4S04

[10]

Labeyrie L. D., Juillet A.. Oxygen Isotopic Exchangeability of Diatom Valve Silica: Interpretation and Consequences for Paleoclimatic Studies. Geochimica et Cosmochimica Acta, 1982, 46: 967-975.

[11]

Leng M. J., Barker P. A.. A Review of the Oxygen Isotope Composition of Lacustrine Diatom Silica for Palaeoclimate Reconstruction. Earth-Science Reviews, 2006, 75: 5-27.

[12]

Leng M. J., Swann G. E. A., Hodson M. J., . The Potential Use of Silicon Isotope Composition of Biogenic Silica as a Proxy for Environmental Change. Silicon, 2009, 1: 65-77.

[13]

Morley D. W., Leng M. J., Mackay A. W., . Late Glacial and Holocene Environmental Change in the Lake Baikal Region Documented by Oxygen Isotopes from Diatom Silica. Global and Planetary Change, 2005, 46: 221-233.

[14]

Morley D. W., Leng M. J., Mackay A. W., . Cleaning of Lake Sediment Samples for Diatom Oxygen Isotope Analysis. Journal of Paleolimnology, 2004, 31: 391-401.

[15]

Nelson D. M., Tréguer P., Brzezinski M. A., . Production and Dissolution of Biogenic Silica in the Ocean: Revised Global Estimates, Comparison with Regional Data and Relationship to Biogenic Sedimentation. Global Biogeochemical Cycles, 1995, 9(3): 359-372.

[16]

Rings A., Lücke A., Schleser G. H.. A New Method for the Quantitative Separation of Diatom Frustules from Lake Sediments. Limnology and Oceanography: Methods, 2004, 2: 25-34.

[17]

Robinson R. S., Brunelle B. G., Sigman D. M.. Revisiting Nutrient Utilization in the Glacial Antarctic: Evidence from a New Method for Diatom-Bound N Isotopic Analysis. Paleoceanography, 2004, 19 PA3001

[18]

Robinson R. S., Sigman D. M., DiFiore P. J., . Diatom-Bound 15N/14N: New Support for Enhanced Nutrient Consumption in the Ice Age Subantarctic. Paleoceanography, 2005, 20 PA3003

[19]

Shemesh A., Burckle L. H., Hays J. D.. Late Pleistocene Oxygen Isotope Records of Biogenic Silica from the Atlantic Sector of the Southern Ocean. Paleoceanography, 1995, 10(2): 179-196.

[20]

Shemesh A., Macko S. A., Charles C. D., . Isotopic Evidence for Reduced Productivity in the Glacial Southern Ocean. Science, 1993, 262: 407-410.

[21]

Shemesh A., Mortlock R. A., Smith R. J., . Determination of Ge/Si in Marine Siliceous Microfossils: Separation, Cleaning and Dissolution of Diatoms and Radiolaria. Marine Chemistry, 1988, 25(4): 305-323.

[22]

Sigman D. M., Altabet M. A., Francois R., . The Isotopic Composition of Diatom-Bound Nitrogen in Southern Ocean Sediments. Paleoceanography, 1999, 14(2): 118-134.

[23]

Singer A. J., Shemesh A.. Climatically Linked Carbon Isotope Variation during the Past 430 000 Years in Southern Ocean Sediments. Paleoceanography, 1995, 10(2): 171-177.

[24]

Swann G. E. A., Leng M. J.. A Review of Diatom δ 18O in Palaeoceanography. Quaternary Science Reviews, 2009, 28: 384-398.

[25]

Swann G. E. A., Leng M. J., Sloane H. J., . Isotope Offsets in Marine Diatom δ 18O over the Last 200 ka. Journal of Quaternary Science, 2008, 23(4): 389-400.

[26]

Swann G. E. A., Leng M. J., Sloane H. J., . Diatom Oxygen Isotopes: Evidence of a Species Effect in the Sediment Record. Geochemistry Geophysics Geosystems, 2007, 8 6 Q06012

[27]

Swann G. E. A., Maslin M. A., Leng M. J., . Diatom δ 18O Evidence for the Development of the Modern Halocline System in the Subarctic Northwest Pacific at the Onset of Major Northern Hemisphere Glaciation. Paleoceanography, 2006, 21 PA1009

[28]

Tyler J. J., Leng M. J., Sloane H. J.. The Effects of Organic Removal Treatment on the Integrity of δ18O Measurements from Biogenic Silica. Journal of Paleolimnology, 2007, 37: 491-497.

[29]

Zhai B., Li T. G., Chang F. M., . Vast Laminated Diatom Mat Deposits from the West Low-Latitude Pacific Ocean in the Last Glacial Period. Chinese Science Bulletin, 2009, 54(23): 4529-4533.

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/