Timing of Precambrian basement from east segment of Tiekelike tectonic belt, Southwestern Tarim, China: Constrains from zircon U-Pb and Hf isotopic

Chao Wang , Liang Liu , Shiping He , Rongshe Li , Wenqiang Yang , Yuting Cao

Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (2) : 142 -154.

PDF
Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (2) : 142 -154. DOI: 10.1007/s12583-012-0239-4
Article

Timing of Precambrian basement from east segment of Tiekelike tectonic belt, Southwestern Tarim, China: Constrains from zircon U-Pb and Hf isotopic

Author information +
History +
PDF

Abstract

This study focuses on the determination of the age and provenance of a Precambrian unit on the southwestern margin of the Tarim craton, collectively known as the Ailiankate (埃连卡特) Group and Sailajiazitage (塞拉加兹塔格) Group, which were previously referred to as Paleoproterozoic-Mesoproterozoic. Zircon U-Pb LA-ICP-MS dating of chlorite quartz schist and tuff that form the Ailiankate Group and Sailajiazitage Group have yielded age peaks at 780 and 787 Ma, respectively. These data indicate that the Ailiankate and Sailajiazitage groups are Neoproterozoic succession deposited at ca. 740–790 Ma. Those strata are temporally equivalent and are likely parts of a single wide spread succession and reflect a rifting process related to the break-up of the Rodinia supercontinent. In situ zircon Hf isotopic data from Sailajiazitage Group show that older zircons (∼1 994 Ma) have crustal model ages of 2 272–2 784 Ma, suggesting an ancient crustal growth and reworking. The ∼787 Ma zircons have ∼2 000 Ma crustal model ages, suggesting derivations from recycled Paleoproterozoic material.

Keywords

zircon U-Pb dating / Hf isotopic / Ailiankate Group / Sailajiazitage Group / Tiekelike / Tarim

Cite this article

Download citation ▾
Chao Wang, Liang Liu, Shiping He, Rongshe Li, Wenqiang Yang, Yuting Cao. Timing of Precambrian basement from east segment of Tiekelike tectonic belt, Southwestern Tarim, China: Constrains from zircon U-Pb and Hf isotopic. Journal of Earth Science, 2012, 23(2): 142-154 DOI:10.1007/s12583-012-0239-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bievre D. P., Taylor P. D.. Table of the Isotopic Compositions of the Elements. International Journal of Mass Spectrometry and Ion Processe, 1993, 123(2): 149-166.

[2]

Blichert-Toft J., Albarede F.. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 1997, 148: 243-258.

[3]

Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region, 1993. Regional Geology of Xinjiang Uygur Autonomous Region. Geological Publishing House, Beijing. 1-841 (in Chinese)

[4]

Chen Y., Xu B., Zhan S., . First Mid-Neoproterozoic Paleomagnetic Results from the Tarim Basin (NW China) and Their Geodynamic Implications. Precambrian Research, 2004, 133: 271-281.

[5]

Chu N. C., Taylor R. N., Chavagnac V., . Hf Isotope Ratio Analysis Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry: An Evaluation of Isobaric Interference Corrections. Journal of Analytical Atomic Spectrometry, 2002, 17: 1567-1574.

[6]

Cui J. W., Guo X. P., Ding X. Z., . Mesozoic-Cenozoic Deformation Structures and Their Dynamics in the Basin Range Junction Belt of the West Kunlun Tarim Basin. Earth Science Frontiers, 2006, 13(4): 103-118.

[7]

Ding D. G., Wang D. X., Liu W. X., . West Kunlun Oroginic Belt and Basin, 1996, Beijing: Geological Publishing House 1 249

[8]

Evans D. A. D.. The Palaeomagnetically Viable, Long-Lived and All-Inclusive Rodinia Supercontinent Reconstruction. Geological Society, London, Special Publications, 2009, 327: 371-404.

[9]

Guo Z. J., Yin A., Bobinson A., . Geochronology and Geochemistry of Deep-Drill-Core Samples from the Basement of the Central Tarim Basin. Journal of Asian Earth Sciences, 2005, 25: 45-56.

[10]

Huang B. C., Xu B., Zhang C., . Paleomagnetism of the Baiyisi Volcanic Rocks (ca. 740 Ma) of Tarim, Northwest China: A Continental Fragment of Neoproterozoic Western Australia?. Precambrian Research, 2005, 142: 83-92.

[11]

Jiang C. F., Wang Z. Q., Li J. Y.. Opening-Closing Tectonics of Central Orogenic Belt, 2000, Beijing: Geological Publishing House 55 72

[12]

Li R. S., Ji W. H., Pan X. P.. 1: 1 000 000 Geologic Map of the Kunlun and Adjacent, 2009, Beijing: Geological Publishing House

[13]

Li Z. X., Bogdanova S. V., Collins A. S., . Assembly, Configuration, and Break-Up History of Rodinia: A Synthesis. Precambrian Research, 2008, 160: 179-210.

[14]

Lu S. N., Li H. K., Zhang C. L., . Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments. Precambrian Research, 2008, 160: 94-107.

[15]

Ludwig K. R.. User’s Manual for Isoplot 3. Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Spec. Pub., 2003, 4: 1-70.

[16]

Scherer E., Muenker C., Mezger K.. Calibration of the Lutetium-Hafnium Clock. American Association for the Advancement of Science, 2001, 293(5530): 683-687.

[17]

Stern R. J.. Neoproterozoic Crustal Growth: The Solid Earth System during a Critical Episode of Earth History. Gondwana Research, 2008, 14: 33-50.

[18]

Turner S. A.. Sedimentary Record of Late Neoproterozoic Rifting in the NW Tarim Basin, China. Precambrian Research, 2010, 181: 85-96.

[19]

Vervoort J. D., Blichert-Toft J.. Evolution of the Depleted Mantle: Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 1999, 63: 533-556.

[20]

Wang C., Liu L., Che Z. C., . U-Pb Geochronology and Tectonic Setting of the Granitic Gneiss in Jianggaleisayi Eclogite Belt, Altyn Tagh. Geological Journal of China Universities, 2006, 12(1): 74-82.

[21]

Wang Y. Z.. The Age and Tectonic Significance of the Yishake Group in West Kunlun. Xinjiang Geology, 1983, 1(1): 1-8.

[22]

Wu F. Y., Li X. H., Zheng Y. F., . Lu-Hf Isotopic Systimatics and Their Applications in Petrology. Acta Petrologica Sinica, 2007, 23(2): 185-220.

[23]

Xu B., Jiang P., Zheng H. F., . U-Pb Zircon Geochronology of Neoproterozoic Volcanic Rocks in the Tarim Block of Northwest China: Implications for the Breakup of Rodinia Supercontinent and Neoproterozoic Glaciations. Precambrian Research, 2005, 136: 107-123.

[24]

Yuan H. L., Gao S., Dai M. N., . Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser Ablation Quadrupole and Multiple Collector ICP-MS. Chemical Geology, 2008, 247: 100-118.

[25]

Zhang C. L., Li X. H., Li Z. X., . Neoproterozoic Ultramafic-Mafic-Carbonatite Complex and Granitoids in Quruqtagh of Northeastern Tarim Block, Western China: Geochronology, Geochemistry and Tectonic Implications. Precambrian Research, 2007, 152: 149-169.

[26]

Zhang C. L., Lu S. N., Yu H. F., . Tectonic Evolution of Western Orogenic Belt: Evidences from Zircon SHRIMP and LA-ICP-MS U-Pb Ages. Science in China (Series D), 2007, 37(2): 145-154.

[27]

Zhang C. L., Li Z. X., Li X. H., . Neoproterozoic Mafic Dyke Swarms at the Northern Margin of the Tarim Block, NW China: Age, Geochemistry, Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 2009, 35: 167-179.

[28]

Zhang C. L., Zhao Y., Guo K. Y., . Geochemistry Characteristics of the Proterozoic Meta-Basalt in Southern Tarim Plate: Evidence for the Meso-Proterozoic Breakup of Paleo-Tarim Plate. Earth Science—Journal of China University of Geosciences, 2003, 28(1): 47-53.

[29]

Zhang, L. C., 1958. Report of Geological Map of the Northwestern Kunlun, Scale 1: 20000. Urumqi (in Chinese)

[30]

Zheng Y. F., Zhang S. B.. Formation and Evolution of Precambrian Continental Crust in South China. Chinese Science Bulletin, 2007, 52(1): 1-10.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/