TSR-derived authigenic calcites in Triassic dolomite, NE Sichuan basin, China—A case study of well HB-1 and well L-2

Sijing Huang , Keke Huang , Zhiming Li , Ming Fan , Ershe Xu , Jie Lü

Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (1) : 88 -96.

PDF
Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (1) : 88 -96. DOI: 10.1007/s12583-012-0235-8
Article

TSR-derived authigenic calcites in Triassic dolomite, NE Sichuan basin, China—A case study of well HB-1 and well L-2

Author information +
History +
PDF

Abstract

It has been proven that thermochemical sulfate reduction (TSR) took place extensively in the Lower Triassic carbonate reservoirs in Northeast (NE) Sichuan (四川) basin. We have carried out analyses on bulk rock compositions and isotope ratios together with petrography and fluid inclusions to assess the impact of TSR on diagenetic process of Triassic dolomites. In this article, TSR-related burial diagenesis is characterized by precipitation of calcite cement with negative δ 13C values and high homogenization temperature. The light carbon isotopic compositions of this phase indicate that carbon incorporated in this cement was partly derived from oxidation of hydrocarbon. The high homogenization temperatures indicate that the thermochemical reduction of sulfates has been taking place in the deep part of NE Sichuan basin. Additional evidence supporting this interpretation is the high Sr values of this calcite cement. Moreover, the calcites have a δ 18O of −8.51‰ to −2.79‰ PDB and are interpreted to have precipitated from high salinity fluids with δ 18O of +5‰ to +13‰ SMOW. Under cathodoluminescence, these calcite cements appear dark brown or black, and both Mg concentrations and Mn/Sr ratios are low. It is therefore indicated that seawater was the principal agent of precipitation fluids. Finally, it should be noted that although H2S and CO2 increased as TSR continued, porosity has been ultimately destroyed by calcite cementation.

Keywords

NE Sichuan basin / Triassic / TSR / calcite cementation / reservoir quality

Cite this article

Download citation ▾
Sijing Huang, Keke Huang, Zhiming Li, Ming Fan, Ershe Xu, Jie Lü. TSR-derived authigenic calcites in Triassic dolomite, NE Sichuan basin, China—A case study of well HB-1 and well L-2. Journal of Earth Science, 2012, 23(1): 88-96 DOI:10.1007/s12583-012-0235-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Broglio Loriga C. B., Neri C., Posenato R.. The Werfen Formation (Lower Triassic) in the Costabella Mt., Uomo Section. Italian IGCP 203 Group, ed., Field Guide-Book: Field Conference on Permian and Permian-Triassic Boundary in the South-Alpine Segment of the Western Tethys, 1986, Brescia: Società Geologica Italiana 116 133

[2]

Cai C. F., Xie Z. Y., Worden R. H., . Methane-Dominated Thermochemical Sulphate Reduction in the Triassic Feixianguan Formation in East Sichuan Basin, China: Towards Prediction of Fatal H2S Concentrations. Marine and Petroleum Geology, 2004, 21: 1265-1279.

[3]

Horacek M., Brandner R., Abart R.. Carbon Isotope Record of the P/T Boundary and the Lower Triassic in the Southern Alps: Evidence for Rapid Changes in Storage of Organic Carbon. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252: 347-354.

[4]

Huang S. J.. Carbonate Diagenesis, 2010, Beijing: Geological Publishing House

[5]

Huang S. J., Qing H. R., Hu Z. W., . Closed-System Dolomitization and the Significance for Petroleum and Economic Geology: An Example from Feixianguan Carbonates, Triassic, NE Sichuan Basin of China. Acta Petrologica Sinica, 2007, 23(11): 2955-2962.

[6]

Huang S. J., Qing H. R., Hu Z. W., . Influence of Sulfate Reduction on Diagenesis of Feixianguan Carbonate in Triassic, NE Sichuan Basin of China. Acta Sedimentologica Sinica, 2007, 25(6): 815-824.

[7]

Huang S. J., Qing H. R., Huang P. P., . Evolution of Strontium Isotopic Composition of Seawater from Late Permian to Early Triassic Based on Study of Marine Carbonates, Zhongliang Mountain, Chongqing, China. Science in China (Ser. D), 2008, 51(4): 528-539.

[8]

Huang S. J., Wang C. M., Huang P. P., . Scientific Research Frontiers and Considerable Questions of Carbonate Diagenesis. Journal of Chengdu University of Technology (Natural Science), 2008, 35(1): 1-10.

[9]

Kaufman A. J., Jacobsen S. B., Knoll A. H.. The Vendian Record of Sr- and C-Isotope Variations in Seawater: Implications for Tectonics and Paleoclimate. Earth Planet Sci. Lett., 1993, 120: 409-430.

[10]

Kaufman A. J., Knoll A. H., Awramik S. M.. Biostratigraphic and Chemostratigraphic Correlation of Neoproterozoic Sedimentary Successions: Upper Tindir Group, Northwestern Canada, as a Test Case. Geology, 1992, 20: 181-185.

[11]

Korte C., Kozur H. W., Bruckschen P., . Strontium Isotope Evolution of Late Permian and Triassic Seawater. Geochimica et Cosmochimica Acta, 2003, 67(1): 47-62.

[12]

Lepper J., Röhling H. G.. Buntsandstein. Hallesches Jb. Geowiss., B, 1998, 6: 27-34.

[13]

Ma Y. S., Guo T. L., Zhao X. F., . The Formation Mechanism of High-Quality Dolomite Reservoir in the Deep of Puguang Gas Field. Science in China (Ser. D), 2008, 51(Suppl.II): 53-64.

[14]

Ma Y. S., Guo T. L., Zhu G. Y., . Simulated Experiment Evidences of the Corrosion and Reform Actions of H2S to Carbonate Reservoirs: An Example of Feixianguan Formation, East Sichuan. Chinese Science Bulletin, 2007, 52(Suppl.1): 178-183.

[15]

Machel H. G.. Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings-Old and New Insights. Sedimentary Geology, 2001, 140: 143-175.

[16]

McKee E.. Stratigraphy and History of the Moenkopi Formation of Triassic Age. The Geologic Society of America Memoir, 1954, 61: 1-133.

[17]

Payne J. L., Lehrmann D. J., Wei J. Y., . Large Perturbations of the Carbon Cycle during Recovery from the End-Permian Extinction. Science, 2004, 305(5683): 506-509.

[18]

Ren J. G., Huang Y. P., Fang Z. S., . Oxygen and Hydrogen Isotope Composition of Meteoric Water in the Tropical West Pacific Ocean. Acta Oceanologica Sinica, 2000, 22(5): 60-64.

[19]

Veizer J., Ala D., Azmy K., . 87Sr/86Sr, δ 13C and δ 18O Evolution of Phanerozoic Seawater. Chemical Geology, 1999, 161: 59-88.

[20]

Wang Y. G., Wen Y. C., Hong H. T., . Diagenesis of Triassic Feixianguan Formation in Sichuan Basin, Southwest China. Acta Sedimentologica Sinica, 2007, 25(6): 831-839.

[21]

Worden R. H., Smalley P. C.. H2S-Producing Reactions in Deep Carbonate Gas Reservoirs: Khuff Formation, Abu Dhabi. Chemical Geology, 1996, 133: 157-171.

[22]

Zhu G. Y., Zhang S. C., Liang Y. B., . Isotopic Evidence of TSR Origin for Natural Gas Bearing High H2S Contents within the Feixianguan Formation of the Northeastern Sichuan Basin, Southwestern China. Science in China (Ser. D), 2005, 48(11): 1960-1971.

[23]

Zhu G. Y., Zhang S. C., Liang Y. B., . Dissolution and Alteration of the Deep Carbonate Reservoirs by TSR: An Important Type of Deep-Buried High-Quality Carbonate Reservoirs in Sichuan Basin. Acta Petrologica Sinica, 2006, 22(8): 2182-2194.

[24]

Zhu G. Y., Zhang S. C., Liang Y. B., . Characteristics of Gas Reservoirs with High Content of H2S in the Northeastern Sichuan Basin and the Consumption of Hydrocarbons due to TSR. Acta Sedimentologica Sinica, 2006, 24(2): 300-308.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/