Post-entrainment mineral-magma interaction in mantle xenoliths from inner Mongolia, western North China craton

Yamei Wang , Baofu Han , William L. Griffin , Lei Zhang , Guiming Shu

Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (1) : 54 -76.

PDF
Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (1) : 54 -76. DOI: 10.1007/s12583-012-0233-x
Article

Post-entrainment mineral-magma interaction in mantle xenoliths from inner Mongolia, western North China craton

Author information +
History +
PDF

Abstract

In order to distinguish the primary microstructures developed under mantle conditions from the secondary phenomena after xenolith entrainment in the host magma, this study intends to discuss the genesis of spongy, sieve-textured, and reaction rims on mineral grains of mantle xenoliths in the Cenozoic basalts from the western North China craton. The spongy rims on primary clinopyroxene show neither obvious compositional zoning nor preferential development towards the host basalt and probably suggest an origin via partial melting within the lithospheric mantle or pressure release as the xenoliths were carried upwards. The sieve-textured rims on primary spinel show clear chemical zoning with increasing Cr# and decreasing Al towards the host basalt. They are interpreted as the result of partial melting due to heating of the host basaltic magma and decreasing pressure during ascent process. Post-entrainment reaction mainly generated secondary minerals at contacts between the host basaltic melt and xenoliths. The secondary clinopyroxene in reaction rims develops on primary clinopyroxene and has higher Ti, Ca, and Fe contents and lower Mg# and Si contents than primary one, while the secondary spinel on primary Cr-Al spinel is titanomagnetite. The secondary olivine and clinopyroxene in the reaction rims on primary orthopyroxene are enriched in Fe, Al, and Ti. The occurrence of reaction rims in mantle xenoliths reflects disequilibrium processes after xenolith entrainment in the basaltic melt. The spongy rims on primary clinopyroxene may not be related to the interaction with the host basaltic melt, while the sieve-textured rims on primary spinel and reactions rims on primary clinopyroxene, spinel, and orthopyroxene may result from post-entrainment reaction between the host basaltic melt and xenolith minerals.

Keywords

mantle xenolith / interaction / spongy rim / sieve-textured rim / reaction rim

Cite this article

Download citation ▾
Yamei Wang, Baofu Han, William L. Griffin, Lei Zhang, Guiming Shu. Post-entrainment mineral-magma interaction in mantle xenoliths from inner Mongolia, western North China craton. Journal of Earth Science, 2012, 23(1): 54-76 DOI:10.1007/s12583-012-0233-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aldanmaz E., Gourgaud A., Kaymakci N.. Constraints on the Composition and Thermal Structure of the Upper Mantle beneath NW Turkey: Evidence from Mantle Xenoliths and Alkali Primary Melts. J. Geodyn., 2005, 39: 277-316.

[2]

Aoki K. I., Fujimaki H.. Petrology and Geochemistry of Calc-Alkaline Andesite of Presumed Upper Mantle Origin from Itinome-Gata, Japan. Am. Mineral., 1982, 67: 1-13.

[3]

Arai S., Abe N., Ishimaru S.. Mantle Peridotites from the Western Pacific. Gondwana Res., 2007, 11: 180-199.

[4]

Ballhaus C., Berry R. F., Green D. H.. Oxygen Fugacity Controls in the Earth’s Upper Mantle. Nature, 1990, 348: 437-440.

[5]

Ballhaus C., Berry R. F., Green D. H.. High Pressure Experimental Calibration of the Olivine-Orthopyroxene-Spinel Oxygen Geobarometer: Implications for the Oxidation State of the Upper Mantle. Contrib. Mineral. Petrol., 1991, 107: 27-40.

[6]

Bonadiman C., Beccaluva L., Coltorti M., . Kimberlite-Like Metasomatism and ‘Garnet Signature’ in Spinel-Peridotite Xenoliths from Sal, Cape Verde Archipelago: Relics of a Subcontinental Mantle Domain within the Atlantic Oceanic Lithosphere?. J. Petrol., 2005, 46(12): 2465-2493.

[7]

Brearley M., Scarfe C. M., Fujii T.. The Petrology of Ultramafic Xenoliths from Summit Lake, near Prince George, British Columbia. Contrib. Mineral. Petrol., 1984, 88(1–2): 53-63.

[8]

Carpenter R. L., Edgar A. D., Thibault Y.. Origin of Spongy Textures in Clinopyroxene and Spinel from Mantle Xenoliths, Hessian Depression, Gernamy. Mineral. Petrol., 2002, 74: 149-162.

[9]

Chen X. D., Lin C. Y., Zhang X. O., . Deformation Characteristics of Mantle Inclusion and Rhyological Significance of Upper Mantle in Quaternary Volcanic Rock at Datong, Shanxi. Seism. Geol., 1997, 19(4): 313-320.

[10]

Chen Y., Wu T. R., Xu X., . Discovery and Significance of Miocene Ultra-Potassium Olivine Basalt with Deep Source Inclusion in Dongbahao, Siziwangqi, Inner Mongolia. J. Geol. Uni., 2004, 10(4): 586-593.

[11]

Coltorti M., Beccaluva L., Bonadiman C., . Glasses in Mantle Xenoliths as Geochemical Indicators of Metasomatic Agents. Earth Planet. Sci. Lett., 2000, 183: 303-320.

[12]

Cvetković V., Downes H., Prelević D., . Characteristics of the Lithospheric Mantle beneath East Serbia Inferred from Ultramafic Xenoliths in Palaeogene Basanites. Contrib. Mineral. Petrol., 2004, 148: 335-357.

[13]

Donaldson C. H.. Petrology of the Uppermost Upper Mantle Deduced from Spinel-Lherzolite and Harzburgite Nodules at Calton Hill, Derbyshire. Contrib. Mineral. Petrol., 1978, 65(4): 363-377.

[14]

Doukhan N., Doukhan J. C., Ingrin J., . Early Partial Melting in Pyroxenes. Am. Mineral., 1993, 78: 1246-1256.

[15]

Du W., Han B. F., Zhang W. H., . The Discovery of Peridotite Xenoliths and Megacrysts in Jining, Inner Mongolia. Acta Petrol. Mineral., 2006, 25: 13-24.

[16]

E M. L., Zhao D. S.. The Cenozoic Basalts and Deep-Seated Xenoliths in Eastern China, 1987, Beijing: Science Press

[17]

Egorova V. V., Volkova N. I., Shelepaev R. A., . The Lithosphere beneath the Sangilen Plateau, Siberia: Evidence from Peridotite, Pyroxenite and Gabbro Xenoliths from Alkaline Basalts. Mineral. Petrol., 2006, 88: 419-441.

[18]

Fan Q. C., Hooper P. R.. The Mineral Chemistry of Ultramafic Xenoliths of Eastern China: Implication for Upper Mantle Composition and the Paleogeotherms. J. Petrol., 1989, 30: 1117-1158.

[19]

Fan Q. C., Sui J. L., Xu P., . Si- and Alkali-Rich Melt Inclusions in Minerals of Mantle Peridotites from Eastern China: Implication for Lithospheric Evolution. Sci. China (Series D), 2006, 49(1): 43-49.

[20]

Gao S., Rudnick R. L., Carlson R. W., . Re-Os Evidence for Replacement of Ancient Mantle Lithosphere beneath the North China Craton. Earth Planet. Sci. Lett., 2002, 198: 307-322.

[21]

Griffin W. L., Zhang A., O’Reilly S. Y., . Flower M. F. J., Chung S. L., Lo C. H., . Phanerozoic Evolution of the Lithosphere beneath the Sino-Korean Craton. Mantle Dynamics and Plate Interactions in East Asia, 1998, Washington, D.C.: Am. Geophys. Union 107 126

[22]

Hill R., Roeder P.. The Crystallization of Spinel from Basaltic Liquid as a Function of Oxygen Fugacity. J. Geol., 1974, 82: 709-729.

[23]

Hirose K., Kawamoto T.. Hydrous Partial Melting of Lherzolite at 1 GPa: The Effect of H2O on the Genesis of Basaltic Magmas. Earth Planet. Sci. Lett., 1995, 133: 463-473.

[24]

Inner Mongolia Bureau of GeologyMineral Resources Regional Geology of Inner Mongolia, 1991, Beijing: Geological Publishing House

[25]

Ionov D. A., Hofmann A. W., Shimizu N.. Metasomatism-Induced Melting in Mantle Xenoliths from Mongolia. J. Petrol., 1994, 35: 753-785.

[26]

Klingenberg M. N. E. T., Kushiro I.. Melting of Chromite-Bearing Harzburgite and Generation of Boninitic Melts at Low Pressures under Controlled Oxygen Fugacity. Lithos, 1996, 37: 1-13.

[27]

Klügel A.. Reactions between Mantle Xenoliths and Host Magma beneath La Palma (Canary Islands): Constraints on Magma Ascent Rates and Crustal Reservoirs. Contrib. Mineral. Petrol., 1998, 131: 237-257.

[28]

Li J. P., Kornprobst J., Vielzeuf D.. Chemical Behaviour of Solid Phases during Partial Melting and Facies Transition (Spinel-Plagioclase) of Mantle Peridotite-I. Experimental Study. Geochimica, 1996, 25(1): 39-52.

[29]

Li J. P., Kornprobst J., Vielzeuf D.. Chemical Behaviour of Solid Phases during Partial Melting and Facies Transition (Spinel-Plagioclase) of Mantle Peridotite-II. Application in Natural Rocks. Geochimica, 1996, 25(4): 353-364.

[30]

Li Y. Z.. The Degree of Partial Melting in Mantle-Derived Nodules in Nüshan Volcanic Rocks. Journal of Xi’an College of Geology, 1993, 15(4): 91-96.

[31]

Liang Y., Elthon D.. Geochemistry and Petrology of Spinel Lherzolite Xenoliths from Xalapasco de La Joya, San Luis Potosi, Mexico: Partial Melting and Mantle Metasomatism. J. Geophys. Res., 1990, 95: 15859-15877.

[32]

Liu C. Q., Li H. P., Huang Z. L., . A Review of Studies on Oxygen Fugacity of the Earth Mantle. Earth Sci. Frontiers, 2001, 8(3): 73-82.

[33]

Lu F. X., Deng J. F., E M. L.. On the Origin of Huangyishan Alkaline Basaltic Magma, Kuandian County, Liaoning Province. Earth Sci., 1981, 1: 183-196.

[34]

Ma J. L., Xu Y. G.. The Characteristics of Sr-Nd Isotope of Mantle Xenoliths from Yangyuan, Hebei Province, Indicate Old Enriched Mantle of EMI Type in Central North China Craton. Chinese Science Bulletin, 2006, 51(10): 1190-1196.

[35]

Mata J., Munha J.. Madeira Island Alkaline Lava Spinels: Petrogenetic Implications. Mineral. Petrol., 2004, 81: 85-111.

[36]

Neumann E. R., Wulff-Pedersen E., Pearson N. J., . Mantle Xenoliths from Tenerife (Canary Islands): Evidence for Reactions between Mantle Peridotites and Silicic Carbonatite Melts Inducing Ca Metasomatism. J. Petrol., 2002, 43(5): 825-857.

[37]

Norman M. D.. Melting and Metasomatism in the Continental Lithosphere: Laser Ablation ICPMS Analysis of Minerals in Spinel Lherzolites from Eastern Australia. Contrib. Mineral. Petrol., 1998, 130: 240-255.

[38]

O’Neil H. S. C., Wall V. J.. The Olivine-Spinel Oxygen Geobarometer, the Nickel Precipitation Curve and the Oxygen Fugacity of the Upper Mantle. J. Petrol., 1987, 28: 1169-1192.

[39]

O’Reilly S. Y., Griffin W. L.. Mantle Metasomatism beneath Western Victoria, Australia: ?. Metasomatic Processes in Cr-Diopside Lherzolites. Geochim. Cosmochim. Acta, 1988, 52(2): 433-447.

[40]

O’Reilly S. Y., Griffin W. L.. 4-D Lithosphere Mapping: Methodology and Examples. Tectonophysics, 1996, 262: 3-18.

[41]

Piccardo G. B., Zanetti A., Müntener O.. Melt/Peridotite Interaction in the Southern Lanzo Peridotite: Field, Textural and Geochemical Evidence. Lithos, 2007, 94: 181-209.

[42]

Qi Q., Taylor L. A., Zhou X.. Petrology and Geochemistry of Mantle Peridotite Xenoliths from SE China. J. Petrol., 1995, 36(1): 55-79.

[43]

Roeder P. L., Poustovetov A., Oskarsson N.. Growth Forms and Composition of Chromian Spinel in MORB Magma: Diffusion-Controlled Crystallization of Chromian Spinel. Can. Mineral., 2001, 39: 397-416.

[44]

Roeder P. L., Thornber C., Poustovetov A., . Morphology and Composition of Spinel in Pu’u’ O’o Lava (1996–1998), Kilauea Volcano, Hawaii. J. Volcanol. Geotherm. Res., 2003, 123: 245-265.

[45]

Rudnick R. L., Gao S., Ling W. L., . Petrology and Geochemistry of Spinel Peridotite Xenoliths from Hannuoba and Qixia, North China Craton. Lithos, 2004, 77: 609-637.

[46]

Ryabchikov I. D., Ntaflos T., Kurat G., . Glass-Bearing Xenoliths from Cape Verde: Evidence for a Hot Rising Mantle Jet. Mineral. Petrol., 1995, 55: 217-237.

[47]

Schilling M., Conceição R. V., Mallmann G., . Spinel-Facies Mantle Xenoliths from Cerro Redondo, Argentine Patagonia: Petrographic, Geochemical, and Isotopic Evidence of Interaction between Xenoliths and Host Basalt. Lithos, 2005, 82: 485-502.

[48]

Shaw C. S. J., Edgar A. D.. Post-Entrainment Mineral-Melt Reactions in Spinel Peridotite Xenoliths from Inver, Donegal, Ireland. Geol. Mag., 1997, 134(6): 771-779.

[49]

Shaw C. S. J., Dingwell D. B.. Experimental Peridotite-Melt Reaction at One Atmosphere: A Textural and Chemical Study. Contrib. Mineral. Petrol., 2008, 155: 199-214.

[50]

Shaw C. S. J., Heidelbach F., Dingwell D. B.. The Origin of Reaction Textures in Mantle Peridotite Xenoliths from Sal Island, Cape Verde: The Case for “Metasomatism” by the Host Lava. Contrib. Mineral. Petrol., 2006, 151: 681-697.

[51]

Shaw C. S. J., Klügel A.. The Pressure and Temperature Conditions and Timing of Glass Formation in Mantle-Derived Xenoliths from Baarley, West Eifel, Germany: The Case for Amphibole Breakdown, Lava Infiltration and Mineral-Melt Reaction. Mineral. Petrol., 2002, 74: 163-187.

[52]

Su B. X., Zhang H. F., Sakyi P. A., . The Origin of Spongy Texture in Minerals of Mantle Xenoliths from the Western Qinling, Central China. Contrib. Mineral. Petrol., 2011, 161: 465-482.

[53]

Tatsumoto M., Basu A., Huang W. K., . Sr, Nd and Pb Isotopes of Ultramafic Xenoliths in Volcanic Rocks of Eastern China: Enriched Components EMI and EMII in Subcontinental Lithosphere. Earth Planet. Sci. Lett., 1992, 113(1–2): 107-128.

[54]

Tracy R. J.. Petrology and Genetic Significance of an Ultramafic Xenolith Suite from Tahiti. Earth Planet. Sci. Lett., 1980, 48(1): 80-96.

[55]

Wilde S. A., Zhou X. H., Nemchin A. A.. Mesozoic Crust-Mantle Interaction beneath the North China Craton: A Consequence of the Dispersal of Gondwanaland and Accretion of Asia. Geology, 2003, 31: 817-820.

[56]

Wood B. J.. An Experimental Test of the Spinel Peridotite Oxygen Barometer. J. Geophys. Res., 1990, 95(B10): 14845-15851.

[57]

Xu Y. G., Mercier J. C. C., Lin C. Y., . K-Rich Glass-Bearing Wehrlite Xenoliths from Yitong, Northeastern China: Petrological and Chemical Evidence for Mantle Metasomatism. Contrib. Mineral. Petrol., 1996, 125: 406-420.

[58]

Yaxley G. M., Kamenetsky V., Green D. H., . Glasses in Mantle Xenoliths from Western Victoria, Australia, and Their Relevance to Mantle Processes. Earth Planet. Sci. Lett., 1997, 148: 433-446.

[59]

Yu C. M., Zheng J. P., Griffin W. L.. LAM-ICPMS Analysis on Clinopyroxenes of Peridotite Xenoliths from Hannuoba and Its Significance on Lithospheric Mantle Evolution. Sci. China (Series D), 2006, 31(1): 93-100.

[60]

Zhang H. F.. Transformation of Lithospheric Mantle through Peridotite-Melt Reaction: A Case of Sino-Korean Craton. Earth Planet. Sci. Lett., 2005, 237: 768-780.

[61]

Zhang M., Zhou X. H., Zhang J. B.. Flower M. F. J., Chung S. L., Lo C. H.. Nature of the Lithospheric Mantle beneath NE China: Evidence from Potassic Volcanic Rocks and Mantle Xenoliths. Mantle Dynamics and Plate Interactions in East Asia, 1998, Washington D.C.: Am. Geophys. Union 197 219

[62]

Zhang W. H., Han B. F., Du W., . Characteristics of Mantle Source for Jining Cenozoic Basalts from Southern Inner Mongolia: Evidence from Element and Sr-Nd-Pb Isotopic Geochemistry. Acta Petrologica Sinica, 2005, 21(6): 1569-1582.

[63]

Zhang W. H., Han B. F.. K-Ar Chronology and Geochemistry of Jining Cenozoic Basalts, Inner Mongolia, and Geodynamic Implications. Acta Petrologica Sinica, 2006, 22(6): 1597-1607.

[64]

Zhang Y. G., E M. L.. The Oxygen Fugacities of Cenozoic Basaltic Magmas and Their Enclosed Mantle Xenoliths. Acta Petrologica Sinica, 1994, 10(2): 161-170.

[65]

Zheng J. P.. Mesozoic-Cenozoic Mantle Replacement and Lithospheric Thinning beneath the Eastern China, 1999, Wuhan: China University of Geosciences Press

[66]

Zheng J. P., Griffin W. L., O’Reilly S. Y., . Mineral Chemistry of Peridotites from Paleozoic, Mesozoic and Cenozoic Lithosphere: Constraints on Mantle Evolution beneath Eastern China. J. Petrol., 2006, 47(11): 2233-2256.

[67]

Zheng J. P., Lu F. X., Yu C. M., . Peridotitic Petrochemistry of the Eastern North China: Significance for lithospheric Mantle Evolution. Sci. China (Series D), 2006, 31(1): 49-56.

[68]

Zheng J. P., Griffin W. L., O’Reilly S. Y., . Mechanism and Timing of Lithospheric Modification and Replacement beneath the Eastern North China Craton: Peridotitic Xenoliths from the 100 Ma Fuxin Basalts and a Regional Synthesis. Geochim. Cosmochim. Acta, 2007, 71: 5203-5225.

[69]

Zhi X. C., Li B. X., Yang J., . Calculation of Temperature and Pressure for Peridotite Xenoliths from Eastern Yangtze Block, Eastern China. Acta Petrol. Sin., 1996, 9: 397-416.

[70]

Zhou Y. T., Zheng J. P., Yu C. M., . Peridotite Xenoliths in Jining Cenozoic Basalts: Mineral-Chemistry and Significance for Lithospheric Mantle Evolution beneath the North China Craton. Acta Petrologica et Mineralogica, 2010, 29(3): 243-257.

[71]

Zhu Y. F.. K- and Si-Rich Glasses in Harzburgite from Damaping, North China. Island Arc, 2008, 17: 560-576.

[72]

Zinngrebe E., Foley S. F.. Metasomatism in Mantle Xenoliths from Gees, West Eifel, Germany: Evidence for the Genesis of Calc-Alkaline Glasses and Metasomatic Ca-Enrichment. Contrib. Mineral. Petrol., 1995, 122: 79-96.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/