Pole to equator temperature gradient for coniacian time, late cretaceous: Oxygen and carbon isotopic data on the Koryak upland and Hokkaido

Yuri D. Zakharov , Olga P. Smyshlyaeva , Alexander M. Popov , Tatiana A. Velivetskaya , Tamara B. Afanasyeva , Kazushige Tanabe , Yasunari Shigeta , Haruyoshi Maeda

Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (1) : 19 -32.

PDF
Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (1) : 19 -32. DOI: 10.1007/s12583-012-0230-0
Article

Pole to equator temperature gradient for coniacian time, late cretaceous: Oxygen and carbon isotopic data on the Koryak upland and Hokkaido

Author information +
History +
PDF

Abstract

The purpose of this study was to estimate the Coniacian latitudinal thermal gradient in the Northern Hemisphere. Both hemipelagic (ammonoids) and benthic (brachiopods and bivalves) δ 18O and δ 13C records were used. They originated from Coniacian shallow-water sequences across a wide range of paleolatitudes, from the Koryak upland (northern Kamchatka, Russian Far East) in the north, to Hokkaido (Japan) in the south. Among Coniacian ammonoids, both migrants from Hokkaido living in high latitudes (Kamchatka) and endemic forms dwelling in middle-low latitudes (Hokkaido) indicate seemingly close optimal growth temperatures. Nevertheless, certain differences in climatic conditions, prevailing during high-latitude coldest seasons, undoubtedly provoked growth cessation in some groups of ammonites. Our isotopic study suggests latitudinal temperature changes of only 0.12 °C per degree of latitude for the Northern Hemisphere in Coniacian times, while the average annual temperature in North Kamchatka seems about 3.3 °C lower than that in Hokkaido.

Keywords

Coniacian / oxygen and carbon isotope / paleotemperature / Kamchatka / Hokkaido

Cite this article

Download citation ▾
Yuri D. Zakharov, Olga P. Smyshlyaeva, Alexander M. Popov, Tatiana A. Velivetskaya, Tamara B. Afanasyeva, Kazushige Tanabe, Yasunari Shigeta, Haruyoshi Maeda. Pole to equator temperature gradient for coniacian time, late cretaceous: Oxygen and carbon isotopic data on the Koryak upland and Hokkaido. Journal of Earth Science, 2012, 23(1): 19-32 DOI:10.1007/s12583-012-0230-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alabushev A. I.. Morphogenesis of Albian and Early Cenomanian Ammonitids of the North-East USSR, 1989, Magadan: Severo-Vostochnyj Kompleksnyj Nauchno-Issledovatelskij Institut Dalnevostochnogo Otdeleniya Rossijskoj Akademii Nauk 104

[2]

Alabushev A. I.. Scaphitids and Some Other Late Cretaceous Ammonoids of Far East, 1989, Magadan: Severo-Vostochnyj Kompleksnyj Nauchno-Issledovatelskij Institut Akademii Nauk SSSR 56

[3]

Alcala-Herrera J. A., Grossman E. L., Gartner S.. Nannofossil Diversity and Equitability and Fine-Fraction δ 13C across the Cretaceous/Tertiary Boundary at Walvis Ridge Leg 74, South Atlantic. Marine Micropaleontology, 1992, 20: 77-88.

[4]

Anderson T. F., Arthur M. A.. Stable Isotopes of Oxygen and Carbon and Their Application to Sedimentologic and Palaeoenvironmental Problems: Stable Isotopes in Sedimentary Geology. Society of Economic Paleontollogists and Mineralogists (SEPM) Short Course, 1983, 10: 1-151.

[5]

Baraboshkin E. Y.. Baraboshkin E. Y.. Early Cretaceous Straits of the Northern Hemisphere. The Straits of the Northern Hemishere during Cretaceous and Palaeogene, 2007, Moscow: Geologicheskij Fakultet Moskovskogo Gosudarstvennogo Universiteta 11 59

[6]

Barrera E.. Global Environmental Changes Preceding the Cretaceous-Tertiary Boundary: Early-Late Maastrichtian Transition. Geology, 1994, 22(10): 877-880.

[7]

Boersma, A., Shackleton, N. J., 1981. Oxygen and Carbon Isotope Variations and Planktonic-Foraminifer Depth Habitats, Late Cretaceous to Paleocene, Central Pacific, Deep Sea Drilling Project Sites 463 and 465. In: Thiede, J., Vollier, T. L., eds., Initial Reports of the Deep Sea Drilling Project, 62: 513–526

[8]

Bowen R.. Paleotemperature Analysis, 1969, Leningrad: Nedra 208

[9]

Clayton, R. N., Stevens, G. R., 1968. Paleotemperatures of New Zealand Belemnites. In: Stable Isotopes in Oceanographic Studies and Paleotemperatures, Tongiorgi (Spoleto, 1965). Pisa, Italy. 199–204

[10]

Coplen T. B., Kendall C., Hopple J.. Comparison of Stable Isotope Reference Samples. Nature, 1983, 302(5905): 236-238.

[11]

Coplen, T. B., Schlanger, S. O., 1973. Oxygen and Carbon Isotope Studies of Carbonate Sediments from Site 167, Magellan Rise, Leg 17. In: Edgar, N. T., Saunders, J. B., eds., Initial Reports of the Deep Sea Drilling Project, 17: 505–509

[12]

Corfield R. M., Cartlidge J. E., Premoli-Silva I., . Oxygen and Carbon Isotope Stratigraphy of the Paleogene and Cretaceous Limestones in the Bottaccione Gorge and the Contessa Highway Sections, Umbria, Italy. Terra Nova, 1991, 3: 414-422.

[13]

Davis T. T., Hooper P. R.. The Determination of the Calcite: Aragonite Ratio in Mollusc Shells by X-Ray Diffraction. Mineralogical Magazine, 1963, 33(262): 608-612.

[14]

Douglas, R. G., Savin, S. M., 1975. Oxygen and Carbon Isotope Analyses of Tertiary and Cretaceous Microfossils from Shatsky Rise and Other Sites in the North Pacific Ocean. In: Larson, R. L., Moberly, R., eds., Initial Reports of the Deep Sea Drilling Project, 32: 509–520

[15]

Erbacher J.. Entwicklung und Palaeoozeanographie Mittelkretazischer Radiolarien der Westlichen Tethys (Italien) und des Nordatlantiks. Tuebinger Micropalaeontologisches Mitteilungen, 1994, 12: 1-139.

[16]

Gale A. S.. Culver S. J., Rawson P. F.. The Cretaceous World. Biotic Response to Global Change, The Last 145 Million Years, 2000, London: Cambridge University Press 4 19

[17]

Golbert A. V.. Foundations of Regional Paleoclimatology, 1987, Moscow: Nedra 223

[18]

Grossman E. L., Ku T. L.. Oxygen and Carbon Isotope Fractionation in Biogenic Aragonite: Temperature Effects. Chemical Geology, 1986, 59: 59-74.

[19]

Hasegawa T., Hatsugai T.. Carbon-Isotope Stratigraphy and Its Chronostratigraphic Significance for the Cretaceous Yezo Group, Kotanbetsu Area, Hokkaido, Japan. Paleontological Research, 2000, 4(2): 95-106.

[20]

Hasegawa T., Pratt L. M., Maeda H., . Upper Cretaceous Stable Carbon Isotope Stratigraphy of Terrestrial Organic Matter from Sakhalin, Russian Far East: A Proxy for the Isotopic Composition of Paleoatmospheric CO2. Palaeoclimatology, Palaeoclimatology, Palaeoecology, 2003, 189(1–2): 97-115.

[21]

Hay W.. Modeling Cretaceous Climate. 2010 GSA Genver Annual Meeting (31 Oct.–3 Nov. 2010). Abstracts weith Programs, 2010, 42(5): 87-91.

[22]

Herman A. B.. Quantative Paleobotanical Data: Constraits on Late Cretaceous Climates in Eurasia and Alaska. Trudy Geologicheskogo InstitutaRossijuskoj Akademii Nauk, 2004, 550: 80-104.

[23]

Herman A. V., Spicer R. A.. Paleobotanical Evidence for a Warm Cretaceous Arctic Ocean. Nature, 1996, 380(6572): 330-333.

[24]

Huber B. T.. Tropical Paradise at the Cretaceous Poles?. Science, 1998, 282(5397): 2199-2200.

[25]

Huber B. T., Hodell D. A., Hamilton C. P.. Middle-Late Cretaceous Climate of the Southern High Latitudes: Stable Isotopic Evidence for Minimal Equator-to-Pole Thermal Gradients. Geological Society of America Bulletin, 1995, 107(10): 1164-1191.

[26]

Huber B. T., Norris R. D., MacLeod K. G.. Deep-Sea Paleotemperat of Extreme Warmth during the Cretaceous. Geology, 2002, 30(2): 123-126.

[27]

Jenkins H. C., Gale A. S., Corfield R. M.. Carbon-Isotope and Oxygen-Isotope Stratigraphy of the English Chalk and Italian Scaglia and Its Palaeoclimatic Significance. Geological Magazine, 1994, 131(1): 1-34.

[28]

Kadama K., Maeda H., Shigeta Y., . Magnetostratigraphy of Upper Cretaceous Strata in South Sakhalin, Russian Far East. Cretaceous Research, 2000, 21(4): 469-478.

[29]

Li L., Keller G.. Variability in Late Cretaceous Climate and Deep Waters: Evidence from Stable Isotopes. Marine Geology, 1999, 161: 171-190.

[30]

Lowenstam H. A., Epstein S.. Paleotemperatures of the Post-Aptian Cretaceous as Determined by the Oxygen Isotope Method. Journal of Geology, 1954, 62: 207-248.

[31]

Naidin D. P.. Baraboshkin E. Y.. Epicontinental Seas of North America and Eurasia. Late Cretaceous Meridional Seaway. The Straits of the Northern Hemishere during Cretaceous and Palaeogene, 2007, Moscow: Geologicheskij Fakultet Moskovskogo Gosudarstvennogo Universiteta 60 79

[32]

Naidin D. P., Kiyashko S. I.. Geochemical Characteristics of the Cenomanian-Turonian Boundary Transition Beds on Mountainous Crimea. Paper 2. Carbon and Oxygen Isotopic Composition: Conditions for Organic Carbon Origin. Bulleten Moskovskogo Obschestva Ispytatelei Prirody, Otdel Geologii, 1994, 69(2): 59-74.

[33]

Pokhialainen V. P.. Pokhialainen V. P.. Inocrramus Population Structure. Mesozoic Bivalve and Cephalopod Mollusks of North-East USSR, 1985, Magadan: Severo-Vostochnyj Kompleksnyj Nauchno-Issledovatelskij Institut 91 103

[34]

Rawson P. F.. Culver S. J., Rawson P. F.. The Response of Cretaceous Cephalopods to Global Change. Biotic Response to Global Change, The Last 145 Million Years, 2000, London: Cambridge University Press 97 106

[35]

Savin S. M.. The History of the Earth’s Surface Temperature during the Past 100 Million Years. Annual Review of Earth and Planetary Sciences, 1977, 5: 319-355.

[36]

Shigeta Y., Maeda H., Tanabe K., . Cretaceous Ammonites from North Kamchatka, Russia. Journal of Geological Society of Japan, 1999, 105: 7-8.

[37]

Spicer R. A.. Culver S. J., Rawson P. F.. Leaf Physiognomy and Climate Change. Biotic Response to Global Change, the Last 145 Million Years, 2000, London: Cambridge University Press 244 264

[38]

Spicer R. A., Ahlberg A., Herman A. B., . Palaeoenvironment and Ecology of the Middle Cretaceous Grebenka Flora of Northeastern Asia. Palaeography, Palaeoclimatology, Palaeoecology, 2002, 184: 65-105.

[39]

Teiss R. V., Naidin D. P.. Paleotermometry and Oxygen-Isotopic Composition in Organogenic Carbonates, 1973, Moskva: Nauka 255

[40]

Teiss R. V., Chupakhin M. S., Naidin D. P.. Temperature Determination from the Oxygen-Isotopic Composition of Biogenic Calcite. International Geological Congress, 22 Session, 1960. Problem 1: Geochemical Cycles, 1960, Moscow: Gosudarstvennoye Nauchno-Tekhnicheskoye Izdatelstvo Literatury po Geologii i Okhrane Nedr 146 156

[41]

Toshimitsu S.. Biostratigraphy of the Upper Cretaceous Santonian Stage in Northwestern Hokkaido. Memoirs Faculty of Science, Kyushu University, Ser. D, Geol., 1988, 26(2): 125-192.

[42]

Toshimitsu S., Hirano H., Matsumoto T.. Data Base and Species Diversity of the Japanese Cretaceous Ammonoids. First International Symposium of Carbon Cycle and Biodiversity Change during the Cretaceous, 2000, Tokyo: Waseda University 54 55

[43]

Veizer J.. Chemical Diagenesis of Belemnite Shells and Possible Consequences for Palaeotemperature Determinations. Neues Jahrburch für Geologie und Paläontologie, Abhandlungen, 1974, 147: 91-111.

[44]

Voigt S.. Stable Oxygen and Carbon Isotopes from Brachiopods of Southern England and North-Western Germany: Estimation of Upper Turonian Palaeotemperatures. Geological Magazine, 2000, 137(6): 687-703.

[45]

Zachos J. C., Arthur M. A.. Paleoceanography of the Cretaceous/Paleogene Boundary Event: Inferences from Stable Isotopic and Other Data. Paleoceanography, 1986, 1(1): 5-26.

[46]

Zakharov V. A., Kurushin N. I., Pokhialaynen V. P.. Paleobiogeographic Criteria of Terrane Geodynamics of Northestern Asia in Mesozoic. Geologiya i Geophizika, 1996, 37(11): 1-22.

[47]

Zakharov Y. D., Boriskina N. G., Ignatiev A. V., . Palaeotemperature Curve for the Late Cretaceous of the Northwestern Circum-Pacific. Cretaceous Research, 1999, 20(6): 685-697.

[48]

Zakharov Y. D., Boriskina N. G., Popov A. M.. The Reconstruction of Late Paleozoic and Mesozoic Marine Environments from Isotopic Data (Evidence from North Eurasia), 2001, Vladivostok: Dalnauka 112

[49]

Zakharov Y. D., Shigeta Y., Popov A., . Cretaceous Climatic Oscillations in the Bering Area (Alaska and Koryak Upland): Isotopic and Palaeontological Evidence. Sedimentary Geology, 2011, 235(1–2): 122-131.

[50]

Zakharov Y. D., Smyshlyaeva O. P., Popov A. M., . Oxygen and Carbon Isotope Composition of the Cretaceous Organogenic Carbonates of the Koryak Upland. Paper 2. Talovka River Basin. Tikhookeanskaya Geologiya, 2002, 21(5): 28-40.

[51]

Zakharov Y. D., Smyshlyeva O. P., Tanabe K., . Seasonal Temperature Fluctuations in the High Northern Latitudes during the Cretaceous Period: Isotopic Evidence from Albian and Coniacian Shallow-Water Invertebrates of the Talovka River Basin, Koryak Upland, Russian Far East. Cretaceous Research, 2005, 26(1): 113-132.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/