Silicification in Mississippian Lodgepole Formation, northeastern flank of Williston basin, Manitoba, Canada

Harvey R. Young , Rongyu Li , Moe Kuroda

Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (1) : 1 -18.

PDF
Journal of Earth Science ›› 2012, Vol. 23 ›› Issue (1) : 1 -18. DOI: 10.1007/s12583-012-0229-6
Article

Silicification in Mississippian Lodgepole Formation, northeastern flank of Williston basin, Manitoba, Canada

Author information +
History +
PDF

Abstract

Five types of replacement silica are recognized in the Lower Mississippian Virden Member carbonates on the northeastern flank of Williston basin: microcrystalline quartz, chalcedonic quartz, anhedral megaquartz, euhedral megaquartz, and stringy megaquartz. Silica tends to replace various bioclasts, and all except the stringy megaquartz also occur as non-replacive void-filling cement or as silica forming chert nodules and silicified limestone. Although crinoids, brachiopods, corals, bryozoans, molluscs, trilobites, forams, and ostracodes are present in the sediments studied, only the first three show evidence of silicification. Crinoids are commonly replaced by microcrystalline quartz whereas brachiopods typically by spherules of length slow chalcedony. Coalesced spherules, often in concentric rings (beekite rings), may form sheet-like masses on the surface of corals and brachiopods. Although bryozoans are common in the Virden Member, none showed any evidence of silicification. The difference in the susceptibility to silicification may be related to the shell microstructure, biological group, size of organism, skeletal mineralogy, and organic content of the bioclasts. Biogenic silica derived from the dissolution of siliceous sponge spicules is considered to be the most likely silica source for silicification. Most silica is believed to be released during early diagenesis before the sediments were deeply buried. The Virden Member carbonate may have experienced two episodes of replacement, the first affecting the bioclasts, the second producing silicified limestone and chert nodules.

Keywords

silicification / Williston basin / Lodgepole Formation / Virden Member / Mississippian / carbonate

Cite this article

Download citation ▾
Harvey R. Young, Rongyu Li, Moe Kuroda. Silicification in Mississippian Lodgepole Formation, northeastern flank of Williston basin, Manitoba, Canada. Journal of Earth Science, 2012, 23(1): 1-18 DOI:10.1007/s12583-012-0229-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Al-Aasm, I. S., Lu, F., 1994. Multistage Dolomitization of the Mississippian Turner Valley Formation, Quirk Creek Field, Alberta: Chemical and Petrologic Evidence. In: Embrey, A. F., Beauchamp, B., Glass, D. J., eds., Pangaea: Global Environments and Resources. Canadian Society of Petroleum Geologists, Memoir, 17: 657–675

[2]

Berg, C. A., 1956. Virden Roselea and North Virden Fields Manitoba. In: The 1st International Williston Basin Symposium, North Dakota Geological Society and Saskatchewan Geological Society. 84–93

[3]

Boyd D. W., Newell N. D.. Taphonomy and Diagenesis of a Permian Fossil Assemblage from Wyoming. Journal of Paleontology, 1972, 46(1): 1-14.

[4]

Boyd D. W., Newell N. D.. Vestigial Shell Structure in Silicified Pectinacean Pelecypods. Contributions to Geology, University of Wyoming, 1984, 23: 1-8.

[5]

Brown G., Catt J. A., Hollyer S. E., . Partial Silicification of Chalk Fossils from the Chilterns. Geological Magazine, 1969, 106(6): 583-586.

[6]

Brunton C. H. C.. Silicified Productoids from the Visean of County Fermanagh. Bulletin of the British Museum (Natural History), 1966, 12(5): 175-243.

[7]

Brunton C. H. C.. Silicified Brachiopods from the Visean of County Fermanagh (III). Bulletin of the British Museum (Natural History), 1984, 38(2): 27-130.

[8]

Butts S. H.. Silicified Carboniferous (Chesterian) Brachiopoda of the Arco Hills Formation, Idaho. Journal of Paleontology, 2007, 81(1): 48-63.

[9]

Buurman P., van der Plas L.. Genesis of Belgian and Dutch Flints and Cherts. Geologie en Mijnbouw, 1971, 50(1): 9-27.

[10]

Carson, G. A., 1987. Silicification Fabrics from the Cenomanian and Basal Turonian of Devon, England: Isotopic Results. In: Marshall, J. D., ed., Diagenesis of Sedimentary Sequences. Geological Society Special Publication, 36: 87–102

[11]

Carson, G. A., 1991. Silicification of Fossils. In: Allison, P. A., Briggs, D. E. G., eds., Taphonomy: Releasing the Data Locked in the Fossil Record. Topics in Geobiology, 9: 455–499

[12]

Cherns L., Wright P.. Quantifying the Impacts of the Early Diagenetic Aragonite Dissolution on the Fossil Record. Palaios, 2009, 24(11–12): 756-771.

[13]

Coniglio M.. Biogenic Chert in the Cow Head Group (Cambro-Ordovician), Western Newfoundland. Sedimentology, 1987, 34(5): 813-823.

[14]

Cooper G. A., Grant R. E.. Permian Brachiopods of West Texas (I). Smithsonian Contributions to Paleobiology, 1972, 14: 1-231.

[15]

Daley R. L.. Patterns and Controls of Skeletal Silicification in a Mississippian Fauna, Northwestern Wyoming: [Dissertation], 1987, Laramie: University of Wyoming 1 140

[16]

Daley R. L., Boyd D. W.. The Role of Skeletal Microstructure during Selective Silicification of Brachiopods. Journal of Sedimentary Research, 1996, 66(1): 155-162.

[17]

Dapples, E. C., 1967. Silica as an Agent in Diagenesis. In: Larson, G., Chilingar, G. V., eds., Diagenesis in Sediments. Developments in Sedimentology, 8: 323–342

[18]

Dietrich, J. R., Magnusson, D. H., 1988. Basement Controls on Phanerozoic Development of the Birtail-Waskada Salt Dissolution Zone, Williston Basin, Southwestern Manitoba. In: Christopher, J. E., Gilboy, C. F., Paterson, D. F., et al., eds., The 8th International Williston Basin Symposium. Saskatchewan Geological Society, Special Publication, 13: 166–174

[19]

Eley B. E., Jull R. K.. Chert in the Middle Silurian Fossil Hill Formation of Manitoulin Island, Ontario. Bulletin of Canadian Petroleum Geology, 1982, 30: 208-215.

[20]

Erwin, D. H., Kidder, D. L., 2000. Depositional Controls on Selective Silicification of Permian Fossils, Southwestern United States. In: Wardlow, B. R., Grant, R. E., Rohr, D. M., eds., The Guadalupian Symposium. Smithsonian Contributions to the Earth Sciences, 12(32): 407–415

[21]

Folk R. L., Pittman J. S.. Length-Slow Chalcedony: A New Testament for Vanished Evaporites. Journal of Sedimentary Petrology, 1971, 41(4): 1045-1058.

[22]

Folk R. L., Weaver C. E.. A Study of the Texture and Composition of Chert. American Journal of Science, 1952, 250: 498-510.

[23]

Gao G., Land L. G.. Nodular Chert from the Arbuckle Group, Slick Hills, Southwestern Oklahoma: A Combined Field, Petrographic and Isotope Study. Sedimentology, 1991, 38(5): 857-870.

[24]

Gaspard D.. Carter J. G.. Diagenetic Modification of Shell Microstructure in the Terebratulida (Brachiopoda, Articulata). Skeletal Biomineralizaiton: Patterns, Processes and Evolutionary Trends, Vol. II. Atlas and Index, 1990, New York: Van Nostrand Reinhold 53 56

[25]

Geeslin J. H., Chafetz H. S.. Ordovician Aleman Ribbon Cherts: An Example of Silicification Prior to Carbonate Lithification. Journal of Sedimentary Petrology, 1982, 52(4): 1283-1293.

[26]

Giménez-Montsant J., Calvet F., Tucker M. E.. Silica Diagenesis in Eocene Shallow-Water Platform Carbonates, Southern Pyrenees. Sedimentology, 1999, 46(6): 969-984.

[27]

Hattori I., Umeda M., Nakogawa T., . From Chalcedonic Chert to Quartz Chert: Diagenesis of Chert Hosted in a Miocene Volcanic-Sedimentary Succession, Central Japan. Journal of Sedimentary Research, 1996, 66(1): 163-174.

[28]

Henderson R. A.. Diagenetic Growth of Euhedral Megaquartz in the Skeleton of a Stromatoporoid. Journal of Sedimentary Petrology, 1984, 54(4): 1138-1146.

[29]

Hesse R.. Selective and Reversible Carbonate-Silica Replacements in Lower Cretaceous Carbonate-Bearing Turbidites of the Eastern Alps. Sedimentology, 1987, 34(6): 1055-1077.

[30]

Holdaway H. K., Clayton C. J.. Preservation of Shell Microstructure in Silicified Brachiopods from the Upper Cretaceous Wilmington Sands of Devon. Geological Magazine, 1982, 119(4): 371-382.

[31]

Jacka A. D.. Replacement of Fossils by Length-Slow Chalcedony and Associated Dolomitization. Journal of Sedimentary Petrology, 1974, 44: 421-427.

[32]

Jackson J. A.. Glossary of Geology, 1997 4th Ed. Alexandria: American Geological Institute 768

[33]

Jones J. B., Segnit E. R.. The Nature of Opal. I. Nomenclature and Constituent Phases. Journal of the Geological Society of Australia, 1971, 18(1): 57-67.

[34]

Kidder D., Erwin D. H.. Secular Distribution of Biogenic Silica through the Phanerozoic: Comparison of Silica-Replaced Fossils and Bedded Cherts at the Series Level. The Journal of Geology, 2001, 109(4): 509-522.

[35]

Knauth L. P.. A Model for the Origin of Chert in Limestone. Geology, 1979, 7: 274-277.

[36]

Lane N. G.. A Silicified Morrowan Brachiopod Faunule from the Bird Spring Formation, Southern Nevada. Journal of Paleontology, 1963, 37(2): 379-392.

[37]

Lane N. G.. A Nearshore Sponge Spicule Mat from the Pennsylvanian of West-Central Indiana. Journal of Sedimentary Petrology, 1981, 51(1): 197-202.

[38]

Lawrence M. J. F.. Conceptual Model for Early Chert and Dolomite, Amuri Limestone Group, North-Eastern South Island, New Zealand. Sedimentology, 1994, 41(3): 479-498.

[39]

Liljedahl L.. Endolithic Micro-Organisms and Silicification of a Bivalve Fauna from the Silurian of Gotland. Lethaia, 1986, 19(3): 267-278.

[40]

Loope D. B., Watkins D. K.. Pennsylvanian Fossils Replaced by Red Chert: Early Oxidation of Pyritic Precursors. Journal of Sedimentary Petrology, 1989, 59(3): 375-386.

[41]

Macurda D. B., Meyer D. C.. The Microstructure of the Crinoid Endoskeleton. University of Kansas Paleontological Contributions, 1975, 74: 1-22.

[42]

Maliva R. G., Dickson J. A. D.. The Mechanism of Skeletal Neomorphism: Evidence from Neomorphosed Mollusks from the Upper Purbeck Formation (Late Jurassic-Early Cretaceous), Southern England. Sedimentary Geology, 1992, 76(3–4): 221-232.

[43]

Maliva R. G., Siever R.. Mechanisms and Control of Silicification of Fossils in Limestone. Journal of Geology, 1988, 96(4): 387-398.

[44]

Maliva R. G., Siever R.. Diagenetic Replacement Controlled by Force of Crystallization. Geology, 1988, 16: 688-691.

[45]

Maliva R. G., Siever R.. Chertification Histories of Some Late Mesozoic and Middle Palaeozoic Platform Carbonates. Sedimentology, 1989, 36(5): 907-926.

[46]

Mansour A. S. M.. Diagenesis of Upper Cretaceous Rudist Bivalves, Abu Roash Area, Egypt: A Petrographic Study. Geologica Croatica, 2004, 57: 55-66.

[47]

Mazzullo S. J., Wilhite B. W., Woolsey I. W.. Petroleum Reserve within a Spicule-Dominated Depositional Sequence: Cowley Formation (Mississippian: Lower Carboniferous), South-Central Kansas. American Association of Petroleum Geologist, Bulletin, 2009, 93(12): 1649-1689.

[48]

McBride E. F., Folk R. L.. Features and Origin of Italian Jurassic Radiolarites Deposited on Continental Crust. Journal of Sedimentary Petrology, 1979, 49: 837-868.

[49]

McCabe H. R.. Mississippian Stratigraphy of Manitoba. Manitoba Mines Branch Publication, 1959, 58(1): 1-99.

[50]

McCabe H. R.. Mississippian Oil Fields of Southwestern Manitoba. Manitoba Mines Branch Publication, 1963, 60(5): 1-50.

[51]

Melzer S. E., Budd D. A.. Retention of High Permeability during Shallow Burial (300–500 m) of Carbonate Grainstones. Journal of Sedimentary Research, 2008, 78(8): 548-561.

[52]

Meyers W. J.. Chertification in the Mississippian Lake Valley Formation, Sacramento Mountains, New Mexico. Sedimentology, 1977, 24(1): 74-105.

[53]

Nissen H. V.. Crystal Orientation and Plate Structure in Echinoid Skeletal Units. Science, 1969, 166(3909): 1150-1152.

[54]

Noble J. P. A., van Stempvoort D. R.. Early Burial, Quartz Authigenesis in Silurian Platform Carbonates, New Brunswick, Canada. Journal of Sedimentary Petrology, 1989, 59(1): 65-76.

[55]

Oldershaw A. E.. Electron-Microscopic Examination of Namurian Bedded Cherts, North Wale (Gt. Britain). Sedimentology, 1968, 10(4): 255-272.

[56]

Olszewski T. D., Erwin D. H.. Change and Stability in the Permian Brachiopod Communities from Western Texas. Palaios, 2009, 24(1–2): 27-40.

[57]

Orme G. R.. Silica in the Visean Limestones of Derbyshire, England. Proceedings of the Yorkshire Geological Society, 1974, 40(1): 63-103.

[58]

Pan H. Z., Erwin D. H.. Gastropods from the Permian of Guangxi and Yunan Provinces, South China. Journal of Paleontology, 2002, 76(1): 1-49.

[59]

Paraguassu A. B.. Experimental Replacement of Carbonate by Silica in Shells. Revista Brasileira de Geociéncias, 1976, 6: 89-94.

[60]

Pearson C. D.. Selective Silicification of Skeletal Carbonates in Some Mississippian and Devonian Limestones: [Dissertation], 1981, Urbana: University of Illinois at Urbana Champaign 1 81

[61]

Richards B. C., Barclay J. E., Bryan J. E., . Mossop G. D., Shetsen I., . Carboniferous Strata of the Western Canada Sedimentary Basin. Geological Atlas of the Western Canada Sedimentary Basin, 1994, Calgary: Canadian Society of Petroleum Geologists and Alberta Research Council 221 250

[62]

Robertson A. H. F.. The Origin and Diagenesis of Cherts from Cyprus. Sedimentology, 1977, 24(1): 11-30.

[63]

Rodríguez S.. Taphonomic Alterations in Upper Viséan Dissepimented Rugose Corals from the Sierra del Castillo Unit (Carboniferous, Córdoba, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 214: 135-153.

[64]

Rong J. Y., Li R. Y.. A Silicified Hirnantia Fauna (Latest Ordovician Brachiopods) from Guizhou, Southwest China. Journal of Paleontology, 1999, 73(5): 831-849.

[65]

Rott, C. M., Qing, H., 2005. Diagenesis of Mississippian Alida Beds, Williston Basin, Southeastern Saskatchewan—Evidence from Petrographic and Fluid-Inclusion Data. In: Summary of Investigations 2005, Volume 1, Saskatchewan Geological Survey, Saskatchewan Industry Resources, Miscellaneous Report 2005, Paper A-11. 1–17

[66]

Savard, M., Beauchamp, B., Veizer, J., 1990. Petrography of Silica in upper Paleozoic Carbonates of the Sverdrup Basin, Canadian Arctic. Current Research, Part D, Geological Survey of Canada, Paper 90-1 D. 101–109

[67]

Schmitt J. G., Boyd D. W.. Patterns of Silicification in Permian Pelecypods and Brachiopods from Wyoming. Journal of Sedimentary Petrology, 1981, 51(4): 1297-1308.

[68]

Schubert J. K., Kidder D. C., Erwin D. H.. Silica Replaced Fossils through the Phanerozoic. Geology, 1997, 25(11): 1031-1034.

[69]

Sereda R. D.. Aspects of the Sedimentology, Stratigraphy and Diagenesis of Lower Mississippian Shelf Margin Carbonates: Souris Valley-Lodgepole Interval of the Williston Basin: [Dissertation], 1990, Saskatoon: University of Saskatchewan 1 169

[70]

Stanton, M. S., 1958. Stratigraphy of the Lodgepole Formation, Virden-Whitewater Area, Manitoba. In: Goodman, A. J., ed., Jurassic and Carboniferous of Western Canada. American Association of Petroleum Geologists, 4(7): 372–390

[71]

Sun Y., Baliński A.. Silicified Mississippian Brachiopods from Muhua, Southern China: Lingulids, Craniids, Strophomenids, Productids, Orthotetids and Orthids. Acta Palaeontologica Polonica, 2008, 53(3): 485-524.

[72]

Towe K. M.. Clay Mineral Diagenesis as a Possible Source of Silica Cement in Sedimentary Rocks. Journal of Sedimentary Petrology, 1962, 32: 26-28.

[73]

Walker T. R.. Carbonate Replacement of Detrital Crystalline Silicate Minerals as a Source of Authigenic Silica in Sedimentary Rocks. Bulletin of the Geological Society of America, 1960, 71: 145-152.

[74]

Wetzel W.. Selektive Verkieselung. Neues Jarhbuch für Geologie und Palaontologie Abhandlungen, 1957, 105(1): 1-9.

[75]

Whidden, K. J., Bottjer, D. J., 1989. A Model for Early Diagenetic Silicification of Trace and Body Fossils. Geological Society of America Annual Meeting. St. Louis. Abstracts with Programs, 20. A19

[76]

Wilson R. C. L.. Silica Diagenesis in Upper Jurassic Limestones of Southern England. Journal of Sedimentary Petrology, 1966, 36(4): 1036-1049.

[77]

Wood G. V., Armstrong A. K.. Diagenesis and Stratigraphy of the Lisburne Group Limestones of the Sadlerochit Mountains and Adjacent Areas, Northeastern Alaska. United States Geological Survey Professional Paper, 1975, 857: 1-47.

[78]

Young H. R., Greggs R. G.. Diagenesis in Lodgepole Limestones, Southwestern Manitoba. Bulletin of Canadian Petroleum Geology, 1975, 23: 201-223.

[79]

Young, H. R., Rosenthal, L. R. P., 1991. Stratigraphic Framework of the Mississippian Lodgepole Formation in the Virden and Daly Oilfields of Southwestern Manitoba. In: Christopher, J. E., Haidl, F. M., eds., Sixth International Williston Basin Symposium. Saskatchewan Geological Society Special Publication, 11: 113–122

[80]

Zakus P. D.. The Sedimentary Petrography and Stratigraphy of the Mississippian Whitewater Lake Member of Southwestern Manitoba: [Dissertation], 1967, Winnipeg: University of Manitoba 1 91

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/