Organic carbon isotope records of paleoclimatic evolution since the last glacial period in the Tangjia region, Tibet

Lingkang Chen , Xulong Lai , Yinbing Zhao , Haixia Chen , Zhongyun Ni

Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (6) : 704 -717.

PDF
Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (6) : 704 -717. DOI: 10.1007/s12583-011-0221-6
Article

Organic carbon isotope records of paleoclimatic evolution since the last glacial period in the Tangjia region, Tibet

Author information +
History +
PDF

Abstract

We firstly present the description of the river terrace at Tangjia (唐家) Village in Lhasa, Tibet, collect soil samples, and select the climate indicators including δ 13C, total organic carbon (TOC), and the Rb/Sr ratios to study its paleoclimate in this area. Ancient climate changes have been reconstructed since the last glacier period. The results show that the δ 13C, TOC, and the Rb/Sr ratio are good indicators of ancient climate fluctuations. Paleoclimatic evolution in the Lhasa Tangjia region could be divided into seven stages. In stages II (11.7–10.2 kaB.P.) and IV (8.1–6.1 kaB.P.), δ 13C was positive and TOC was high, indicating that the climates in these two stages were relatively warm and humid. In stages III (10.2–8.1 kaB.P.) and V (6.1–4.9 kaB.P.), δ 13C showed cyclical fluctuations, but TOC exhibited less change, suggesting that the climates displayed variation on the millennial scale. Moreover, the climatic variations were on a century-long scale during the later Middle Holocene. Compared with δ 13C from Sumxi Co (松木希错) and δ 18O from the Guliya (古里雅) ice core, the study confirmed that four cold events occurred during the Holocene (9.4, 8.2, 5.4, and 4.2 kaB.P.). The climate indicators were limited to the river terrace based on the geological characteristics of the Lhasa region. Unexpectedly, δ 13C was a sensitive indicator of climate change.

Keywords

organic carbon isotopes / TOC / paleoclimate / Lhasa

Cite this article

Download citation ▾
Lingkang Chen, Xulong Lai, Yinbing Zhao, Haixia Chen, Zhongyun Ni. Organic carbon isotope records of paleoclimatic evolution since the last glacial period in the Tangjia region, Tibet. Journal of Earth Science, 2011, 22(6): 704-717 DOI:10.1007/s12583-011-0221-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alley R. B., Mayewski P. A., Sowers T., . Holocene Climatic Instability: A Prominent, Widespread Event 8 200 Years Ago. Geology, 1997, 25: 483-486.

[2]

An Z. S., Porter S. C., Zhou W. J., . Episode of Serengened Summer Monsoon Climate of Younger Dryas Age on the Loess Plateau of Central China. Quaternary Research, 1993, 39: 45-54.

[3]

Andersen K. K., Azuma N., Barnola J. M., . High Resolution Record of Northern Hemisphere Climate Extending into the Last Interglacial Period. Nature, 2004, 431(7005): 147-151.

[4]

Black C. C., Osmond C. B.. Crassulacean Acid Metabolism Photosynthesis: ‘Working the Night Shift’. Photosynthesis Research, 2003, 76(1–3): 329-341.

[5]

Bohnert H. J., Jensen R. G.. Metabolic Engineering for Increased Salt to Lerance. Australian Journal of Plant Physiology, 1996, 23: 661-667.

[6]

Bond G., Showers W., Cheseby M., . A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates. Science, 1997, 278(5341): 1257-1266.

[7]

Cerling T. E., Quade J., Wang Y., . Carbon Isotopes in Soils and Palaeosols as Ecology and Palaeoecology Indicators. Nature, 1989, 341: 138-139.

[8]

Chen J., Ji J. F., Qiu G.. Geochemical Studies on the Intensity of Chemical Weathering in Luochuan Loess-Paleosol Sequence, China. Science in China (Series D), 1998, 41(3): 235-241.

[9]

Chen L. K., Guo J. Q., Gu Y. S.. Characteristics of Phytolith Assemblages from Sediments of Modern River Floodplain and First Terraces in Lhasa River, Tibet. Acta Sedimentologica Sinica, 2008, 26(3): 479-486.

[10]

Chen S. P., Bai Y. F., Han X. G.. Applications of Stable Carbon Isotope Techniques to Ecological Research. Acta Phytoecologica Sinica, 2002, 26(5): 549-560.

[11]

Chen S. Y., Wang S. M., Jin Z. D., . Lake Sedimentary Record of Environmental Evolution in the Last 2.8 Ma from the Co Ngoin Basin, Central Qinghai-Xizang Plateau. Geochimica, 2004, 33(2): 159-164.

[12]

Choi W. J., Ro H. M., Chang S. X.. Carbon Isotope Composition of Phragm Ites Australis in a Constructed Saline Wetland. Aquatic Botany, 2005, 82(1): 27-38.

[13]

Cushman J. C., Borland A. M.. Induction of Crassulacean Acid Metabolism by Water Limitation. Plant, Cell and Environment, 2002, 25(2): 295-310.

[14]

Dansgaard W., Johnsen S. J., Clausen H. B., . Evidence for General Instability of Past Climate from a 250-kyr Ice-Core Record. Nature, 1993, 364(15): 218-220.

[15]

Dasch E. J.. Strontium Isotopes in Weathering Profiles, Deep Sea Sediments and Sedimentary Rocks. Geochim. Cosmochim. Acta, 1969, 33(2): 1521-1552.

[16]

Earnshaw M. J., Winter K., Ziegler H., . Altitudinal Changes in the Incidence of Rassulacean Acid Metabolism in Vascular Epiphytes and Related Life Forms in Papua New Guinea. Oecologia, 1987, 73(4): 566-572.

[17]

Gasse F., Arnold M., Fontes J. C., . A 13 000-year Climate Record from Western Tibet. Nature, 1991, 353(6346): 742-745.

[18]

Gasse F., Fontes J. C., van Campo E., . Holocene Environmental Changes in Bangong Co Basin (Western Tibet). Part 4: Discussion and Conclusion. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 120(1–2): 79-92.

[19]

Grootes P. M., Stuiver M.. Oxygen 18/16 Variability in Greenland Snow and Ice with 10−3–10−5 Year Time Resolution. Journal of Geophysical Research, 1997, 102(C12): 26455-26470.

[20]

Gu Z. Y., Liu J. Q., Yuan B. Y., . Monsoon Variations of the Qinghai-Tibetan Plateau during the Last 12 000 Years-Geochemical Evidence from the Sediments of Siling Co. Chinese Science Bulletin, 1993, 38(1): 577-581.

[21]

Guillet B., Faivre P., Mariotti A., . 14C Dates and 13C/14C Ratios of Soil Organic Matter as a Means of Studying the Past Vegetation in Intertropical Regions: Examples from Colomibia (South America). Palaeogeography, Palaeoclimatology, Palaeoecology, 1988, 65: 51-58.

[22]

Haag Kerwer A., Franco A. C., Luettge U.. The Effect of Temperature and Light on Gas Exchange and Acid Accumulation in the C3-CAM Plant Clusiaminor L. Journal of Experimental Botany, 1992, 43(248): 345-352.

[23]

Jin Z. D., Cao J. J., Wu J. L., . A Rb/Sr Record of Catchment Weathering Response to Holocene Climate Change in Inner Mongolia. Earth Surface Processes and Landforms, 2005, 10: 1243-1249.

[24]

Kelly E. F., Blecker S. W., Yonker C. M., . Stable Isotope Composition of Soil Organic Matter and Phytoliths as Paleoenvironmental Indicators. Geoderma, 1998, 82(1–3): 59-81.

[25]

Li J. G.. Discovery and Preliminany Study on Palynofossils from the Cenozoic Qinwu Formation of Xizang (Tibet). Acta Micropalaeontologica Sinica, 2004, 6(2): 216-221.

[26]

Li Y. F., Zhang Q. S., Li B. Y.. Ostracod Fauna and Environmental Changes during the Past 17 000 Years in the Western Tibet. Acta Geographica Sinica, 1994, 49(1): 46-54.

[27]

Lissner J., Schierup H. H., Comin F. A., . Effect of Climate on the Salt Tolerance of Two Phragmites Australis Populations. Part II: Diurnal CO2 Exchange and Transp Iration. Aquat. Bot, 1999, 64(3–4): 335-350.

[28]

Lister G. S., Kelts K., Zao C. K., . Lake Qinghai, China: Closed Basin Lake Levels and the Oxygen Isotope Record for Ostracoda since the Latest Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 84(1–4): 141-162.

[29]

Liu X. H., Qin D. H., Shao X. M., . The Ring of δ 13C and Its Climate Significance from Himalayan Abiesin in Tibet. Chinese Science Bulletin, 2003, 45(11): 1209-1213.

[30]

Liu X. Q., Wang S. M., Shen J., . Effect and Variations on the Organic Carbon-Isotope at Sedimentary from Qinghai Lake in the Past 16 ka. Progress in Natural Science, 2003, 30: 619-627.

[31]

H. Y., Gu Z. Y., Wu N. Q., . Effect of Altitude on the Organic Carbon-Isotope Composition of Modern Surface Soils from Qinghai-Xiang Plateau. Quaternary Sciences, 2001, 21(5): 399-405.

[32]

Mangerud J., Andersen S. T., Berglund B. E., . Quaternary Stratigraphy of Norden, a Proposal for Terminology and Classification. Boreas, 1974, 3: 109-128.

[33]

Manuel N., Cornic G., Aubert S., . Protection against Photo Inhibition in the Alpine Plant Geummontanum. Oecologia, 1999, 119: 149-158.

[34]

Mischke S., Zhang C. J.. Holocene Cold Events on the Tibetan Plateau. Global and Planetary Change, 2010, 72: 155-163.

[35]

Ning Y. F., Liu W. G., An Z. S., . A 130-ka Reconstruction of Precipitation on the Chinese Loess Plateau from Organic Carbon Isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 270: 59-63.

[36]

Philip A. M., Shoji H.. An Organic Carbon Isotopic of Glacial-Postglacial Change in Atmospheric pCO2 in the Sediments of Lake Biwa, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 1993, 105(3–4): 171-178.

[37]

Schidlowski M.. Carbon Isotopes as Biogeochemical Recorders of Life over 3.8 Ga of Earth History: Evolution of a Concept. Precambrian Research, 2001, 106: 117-134.

[38]

Smith B. N., Epstein S.. Two Categories of 13C/12C Ratios for Higher Plants. Plant Physiology, 1971, 47: 380-384.

[39]

Stuiver M.. Climate versus Change in 13C Content of the Organic Component of Lake Sediments during the Late Quaternary. Quaternary Research, 1975, 5(2): 251-262.

[40]

Stuiver M., Grootes P. M., Braziunas T. F.. The GISP2 δ 18O Climate Record of the Past 16 500 Years and the Role of the Sun, Ocean, and Volcanoes. Quaternary Research, 1995, 44: 341-354.

[41]

Sun X. J., Du N. Q., Chen Y. S., . Pollen Analysis on Sedimentary of Se Ling Co Lake, Tibet. Acta Vegetation Sinica, 1993, 35(12): 943-950.

[42]

Tang L. Y., Shen C. M., Liao G. B., . The Climate Change since the Last Glacial Maximum in Southeast Tibet-Pollen Records from Southeast Tibet. Science in China (Series D), 2004, 34(5): 436-442.

[43]

Thompson L. G., Yao T. D., Davis M. E., . Tropical Climate Instability: The Last Glacial Cycle from a Qinghai-Tibetan Ice Core. Science, 1997, 276(5320): 1821-1825.

[44]

Wang J. B., Zhu L. P.. The Response of Organic Matter δ 13C to Cold/Warm Fluctuation of Chen Co Lake Sediment, Southern Tibet. Marine Geology & Quaternary Geology, 2007, 27(2): 113-121.

[45]

Wang L. Q., Yi C. L., Schütt B., . Genetic Characteristics and Environmental Implications of Sedimentary Deposits of Lake Nam Co in Tibetan Plateau. Acta Sedimentologica Sinica, 2009, 27(3): 503-509.

[46]

Wang S. B., Ge Q. S., Zheng J. Y.. Climate and Its Effects around 2 kaBP in China. Marine Geology & Quaternary Geology, 2006, 26(2): 123-131.

[47]

Wang S. W., Xie Z. H.. Climate Variability at Millennial Time Scales. Earth Science Frontiers, 2002, 9(1): 143-153.

[48]

Winter K., Ziegler H.. Induction of Crassulacean Acid Metabolism in Mesembryanthem Umcrystallinum Increases Reproductive Success under Conditions of Drought and Salinity Stress. Oecologia, 1992, 92(4): 475-479.

[49]

Wu X. D.. Application of Tree Ring Analysis to the Study on Environment Variation. Quaternary Sciences, 1990, 2: 188-196.

[50]

Wu Y. H., Lücke A., Wünnemann B., . Holocene Climate Change in the Central Tibetan Plateau Inferred by Lacustrine Sediment Geochemical Records. Science in China (Series D), 2007, 37(9): 1185-1191.

[51]

Wu Y. H., Wang S. M., Hou X. H., . Chronology Study on Lake Sediments of Holocene at Cuo E in the Central Tibetan Plateau. Science in China (Series D), 2006, 36(8): 713-722.

[52]

Wu Z. H., Wu Z. H., Ye P. S., . Late Cenozoic Environmental Evolution of the Qinghai-Tibet Plateau as Indicated by the Evolution of Sporopollen Assemblages. Geology in China, 2006, 33(5): 973-974.

[53]

Wu Z. H., Zhao X. T., Wu Z. H., . Paleovegetation, Paleoclimatic Lake-Level Change since the Last Glacial Maximum in Nam Co, Tibet. Geological Bulletin of China, 2003, 22(11): 928-934.

[54]

Wu Z. H., Zhao X. T., Wu Z. H., . Paleovegetation, Paleoclimatic Lake-Level Change since 120 ka BP in Nam Co, Central Xizang. Acta Geologica Sinica, 2004, 78(2): 242-252.

[55]

Wynn J. G.. Carbon Isotope Fractionation during Decomposition of Organic Matter in Soils and Paleosols: Implications for Paleoecological Interpretations of Paleosols. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 251: 437-448.

[56]

Xie, Y. W., Peng, X. J., Duan, G. X., et al., 2009. Report on l: 250 000 Regional Geological Survey of Lhasa Mapsheet. Tibet Geological Survey, Lhasa. 1–365 (in Chinese)

[57]

Xu J. H.. Sun, Climate, Hunger, and Mass Migration. Science in China (Series D), 1998, 28(4): 366-384.

[58]

Yao T. D., Duan K. Q., Tian L. D., . Accumulation on Dasuopu Ice-Core Record and Variations in Precipitation from Indian Summer Monsoon in the Past 400 a. Science in China (Series D), 2000, 30: 619-627.

[59]

Yao T. D., Qin D. H., Tian L. D., . Variations in Temperature and Precipitation in the Past 2 000 a on the Xizang (Tibet) Plateau-Guliya Ice Core Record. Science in China (Series D), 2006, 26(4): 348-353.

[60]

Yu J. X., Liu A. M., Huang Y. Z., . Pollen-based Reconstructions of Late Pleistocene and Holocene Vegetation and Climatic Changes of Yang Lake Area, Tibet. Chinese Bulletin of Botany, 2004, 21(1): 91-100.

[61]

Zhang Q., Han Y. X., Song L. C.. The Summarize of Development of Global Climate Change and Its Effect Factors. Advances in Earth Science, 2005, 20(9): 990-998.

[62]

Zhao X. T., Zhu D. G., Wu Z. H., . The Development of Nam Co Lake in Tibet since Late Pleistocene. Acta Geoscientia Sinica, 2002, 23(4): 329-334.

[63]

Zhao X. T., Zhu D. G., Yan F. H., . Climatic Change and Lake-Level Variation of Namu Co, Xizang since the Last Interglacial Stage. Quaternary Science, 2003, 23(1): 41-45.

[64]

Zheng M. P., Yuan H. R., Zhao X. T., . The Quaternary Pan-Lake (over Flow) Period and Paleoclimate on the Qinghai-Tibet Plateau. Acta Geologica Sinica, 2006, 80(2): 169-180.

[65]

Zhou J. L., Wu Y., Zhang J., . Carbon and Nitrogen Composition and Stable Isotope as Potential Indicators of Source and Fate of Organic Matter in the Salt Marsh of the Changjiang Estuary, China. Chemosphere, 2006, 65: 310-317.

[66]

Zhou W. J., An Z. S., Porter S. C., . Correlation of Climatic Events between East Asia and Norwegian Sea during Last Deglaciation. Science in China (Series D), 1997, 40(5): 496-510.

[67]

Zhou W. J., Lu X. F., Wu Z. K., . Peat Record Reflecting Holocene Climatic Change in the Zoigê Plateau and AMS Radiocarbon Dating. Chinese Science Bulletin, 2002, 47(1): 66-70.

[68]

Zhu L. P., Zhen X. L., Wang J. B., . A 30 000-Year Record of Environmental Changes Inferred from Lake Chen Co, Southern Tibet. Journal of Paleolimnology, 2009, 42: 343-358.

[69]

Zotz G., Winter K.. Short Term Regulation of Crassulacean Acid Metabolism Activity in a Tropical Hemiepiphyte, Clusia Uvitana. Plant Physiology, 1993, 102(3): 835-841.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/