Experimental investigation on low-degree dehydration partial melting of biotite gneiss and phengite-bearing eclogite at 2 GPa

Qiang Liu , Yao Wu , Junfeng Zhang

Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (6) : 677 -687.

PDF
Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (6) : 677 -687. DOI: 10.1007/s12583-011-0219-0
Article

Experimental investigation on low-degree dehydration partial melting of biotite gneiss and phengite-bearing eclogite at 2 GPa

Author information +
History +
PDF

Abstract

The ultrahigh-pressure (UHP) eclogite and gneiss from the Dabie (大别)-Sulu (苏鲁) orogen experienced variable degrees of partial melting during exhumation. We report here dehydration partial melting experiments of biotite gneiss and phengite-bearing eclogite at 2 GPa and 800–950 °C. Our results show that the partial melting of gneiss is associated with the breakdown of biotite into almandine-rich garnet starting at 900 °. About 10% granitic melt can be produced at 950 °C. In contrast, the partial melting of phengite-bearing eclogite exists at slightly lower temperatures (800–850 °C). The melt fraction is in general more in biotite gneiss than in phengite-bearing eclogite under similar pressure and temperature conditions. Both melts are rich in silica and alkali, but poor in FeO, MgO and CaO. These results suggest that low-degree partial melting of gneiss and eclogite is often associated with dehydration of hydrous mineral, such as micas. The dehydration temperature and melt composition can place important constraints on the partial melting phenomena (granitic leucosome and multi-phase mineral inclusions) recorded in UHP rocks.

Keywords

gneiss / eclogite / partial melting / dehydration / phengite / biotite

Cite this article

Download citation ▾
Qiang Liu, Yao Wu, Junfeng Zhang. Experimental investigation on low-degree dehydration partial melting of biotite gneiss and phengite-bearing eclogite at 2 GPa. Journal of Earth Science, 2011, 22(6): 677-687 DOI:10.1007/s12583-011-0219-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Auzanneau E., Vielzeuf D., Schmidt M. W.. Experimental Evidence of Decompression Melting during Exhumation of Subducted Continental Crust. Contrib. Mineral. Petrol., 2006, 152: 125-148.

[2]

Bureau H., Keppler H.. Complete Miscibility between Silicate Melts and Hydrous Fluids in the Upper Mantle: Experimental Evidence and Geochemical Implications. Earth Planet. Sci. Lett., 1999, 165: 187-196.

[3]

Chen R. X., Zheng Y. F., Gong B., . Origin of Retrograde Fluid in Ultrahigh-Pressure Metamorphic Rocks: Constraints from Mineral Hydrogen Isotope and Water Content Changes in Eclogite-Gneiss Transitions in the Sulu Orogen. Geochim. Cosmochim. Acta, 2007, 71(9): 2299-2325.

[4]

Ernst W. G.. Preservation/Exhumation of Ultra-High-Pressure Subduction Complexes. Lithos, 2006, 92: 321-335.

[5]

Ferrando S., Frezzotti M. L., Dallai L., . Multiphase Solid Inclusions in UHP Rocks (Su-Lu, China): Remnants of Supercritical Silicate-Rich Aqueous Fluids Released during Continental Subduction. Chem. Geol., 2005, 223: 68-81.

[6]

Gardien V., Thompson A. B., Ulmer P.. Melting of Biotite+ Plagioclase+Quartz Gneisses: The Role of H2O in the Stability of Amphibole. J. Petrol., 2000, 41(5): 651-666.

[7]

Hermann J.. Experimental Constraints on Phase Relations in Subducted Continental Crust. Contrib. Mineral. Petrol., 2002, 143: 219-235.

[8]

Hermann J., Green D. H.. Experimental Constraints on High Pressure Melting in Subducted Crust. Earth Planet. Sci. Lett., 2001, 188: 149-168.

[9]

Hermann J., Spandler C., Hack A., . Aqueous Fluids and Hydrous Melts in High-Pressure and Ultra-High Pressure Rocks: Implications for Element Transfer in Subduction Zones. Lithos, 2006, 92: 399-417.

[10]

Holyoke C. W. III, Tullis J.. The Interaction between Reaction and Deformation: An Experimental Study Using a Biotite+Plagioclase+Quartz Gneiss. J. Metamorph. Geol., 2006, 24: 743-762.

[11]

Hwang S. L., Shen P. Y., Chu H. T., . Kokchetavite: A New Potassium-Feldspar Polymorph from the Kokchetav Ultrahigh-Pressure Terrane. Contrib. Mineral. Petrol., 2004, 148: 380-389.

[12]

Klimm K., Blundy J. D., Green T. H.. Trace Element Partitioning and Accessory Phase Saturation during H2O-Saturated Melting of Basalt with Implications for Subduction Zone Chemical Fluxes. J. Petrol., 2008, 49(10): 523-553.

[13]

Labrousse L., Jolivet L., Agard P., . Crustal-Scale Boudinage and Migmatization of Gneiss during Their Exhumation in the UHP Province of Western Norway. Terra Nova, 2002, 14: 263-270.

[14]

Lang H. M., Gilotti J. A.. Partial Melting of Metapelites at Ultrahigh-Pressure Conditions, Greenland Caledonides. J. Metamorph. Geol., 2007, 25(2): 129-147.

[15]

Liu F. L., Xu H. M., Liu P. H.. Partial Melting Time of Ultrahigh-Pressure Metamorphic Rocks in the Sulu UHP Terrane: Constrained by Zircon U-Pb Ages, Trace Elements and Lu-Hf Isotope Compositions of Biotite-Bearing Grainite. Acta Petrol. Sin., 2009, 25(5): 1039-1055.

[16]

Liu F. L., Xu H. M., Xu Z. Q., . SHRIMP U-Pb Zircon Dating from Eclogite Lens in Marble, Shuanghe Area, Dabie UHP Terrane: Restriction on the Prograde, UHP and Retrograde Metamorphic Ages. Acta Petrol. Sin., 2006, 22(7): 1761-1778.

[17]

Liu Q., Jin Z. M., Zhang J. F.. An Experimental Study of Dehydration Partial Melting of a Phengite-Bearing Eclogite at 1.5–3.0 GPa. Chin. Sci. Bull., 2009, 54(12): 2090-2100.

[18]

Malaspina N., Hermann J., Scambelluri M., . Polyphase Inclusions in Garnet-Orthopyroxenite (Dabie Shan, China) as Monitors for Metasomatism and Fluid-Related Trace Element Transfer in Subduction Zone Peridotite. Earth Planet. Sci. Lett., 2006, 249: 173-187.

[19]

Massonne H. J.. Hydration, Dehydration, and Melting of Metamorphosed Granitic and Dioritic Rocks at High- and Ultrahigh-Pressure Conditions. Earth Planet. Sci. Lett., 2009, 288: 244-254.

[20]

Nakamura D.. Stability of Phengite and Biotite in Eclogites and Characteristics of Biotite- or Ortho Pyroxene-Bearing Eclogites. Contrib. Mineral. Petrol., 2003, 145: 550-567.

[21]

Patino Douce A. E.. Fluid-Absent Melting of Tonalite at 15–32 kbar. J. Petrol., 2004, 46(2): 275-290.

[22]

Perchuk L. L., Safonov O. G., Yapaskurt V. O., . Crystal-Melt Equilibria Involving Potassium-Bearing Clinopyroxene as Indicator of Mantle-Derived Ultra-High-Potassic Liquids: An Analytical Review. Lithos, 2002, 60: 89-111.

[23]

Poli S., Schmidt M. W.. The High-Pressure Stability of Hydrous Phase in Orogenic Belts: An Experimental Approach on Eclogite-Forming Processes. Tectonophysics, 1997, 273: 169-184.

[24]

Schmidt M. W., Vielzeuf D., Auzanneau E.. Melting and Dissolution of Subducting Crust at High Pressures: The Key Role of White Mica. Earth Planet. Sci. Lett., 2004, 228: 65-84.

[25]

Skjerlie K. P., Patino Douce A. E.. The Fluid-Absent Partial Melting of a Zoisite-Bearing Quartz Eclogite from 1.0 to 3.2 GPa: Implication for Melting in Thickened Continental Crust and for Subduction-Zone Processes. J. Petrol., 2002, 43(2): 291-314.

[26]

Song S. G., Yang J. S., Xu Z. Q., . Metamorphic Evolution of the Coesite-Bearing Ultrahigh-Pressure Terrane in the North Qaidam, Northern Tibet, NW China. J. Metamorph. Geol., 2003, 21: 631-644.

[27]

Stockhert B., Duyster J., Trepmann C., . Microdiamond Daughter Crystals Precipitated from Supercritical COH+Silicate Fluids Included in Garnet, Erzgebirge, Germany. Geology, 2011, 29: 391-394.

[28]

Stockhert B., Trepmann C. A., Massonne H. J.. Decrepitated UHP fluid Inclusions: About Diverse Phase Assemblages and Extreme Decompression Rates (Erzgebirge, Germany). J. Metamorph. Geol., 2009, 27: 673-684.

[29]

Vanderhaeghe O., Teyssierc C.. Partial Melting and Flow of Orogens. Tectonophysics, 2001, 342: 451-472.

[30]

Wallis S., Tsuboi M., Suzuki K., . Role of Partial Melting in the Evolution of the Sulu (Eastern China) Ultrahigh-Pressure Terrane. Geology, 2005, 33(2): 129-132.

[31]

Xia Q. X., Zheng Y. F., Zhou L. G.. Dehydration and Melting during Continental Collision: Constraints from Element and Isotope Geochemistry of Low-T/UHP Granitic Gneiss in the Dabie Orogen. Chem. Geol., 2008, 247: 36-65.

[32]

Yang J. J., Godard G., Smith D. C.. K-Feldspar in the Coesite Pseudomorphs in an Eclogite from Lanshantou (Eastern China). Eur. J. Mineralog., 1998, 10: 969-985.

[33]

Yang X. S., Jin Z. M., Huenges E., . Experimental Study on Dehydration Melting of Natural Biotite-Plagioclase Gneiss from High Himalayas and Implications for Himalayan Crust Anatexis. Chin. Sci. Bull., 2001, 46(10): 867-872.

[34]

Zeng L. S., Liang F. H., Asimow P., . Partial Melting of Deeply Subducted Continental Crust and the Formation of Quartzofeldspathic Polyphase Inclusions in the Sulu UHP Eclogites. Chin. Sci. Bull., 2009, 54: 2580-2594.

[35]

Zhang J. F., Jin Z. M., Green H. W., . Hydroxyl in Continental Deep Subduction Zone: Evidence from UHP Eclogites of the Dabie Mountains. Chin. Sci. Bull., 2001, 46(7): 592-595.

[36]

Zhang R. Y., Liou J. G., Iizuka Y., . First Record of K-Cymrite in North Qaidam UHP Eclogite, Western China. Am. Mineral., 2009, 94: 222-228.

[37]

Zhang R. Y., Liou J. G., Zheng Y. F., . Transition of UHP Eclogites to Gneissic Rocks of Low-Amphibolite Facies during Exhumation: Evidence from the Dabie Terrane, Central China. Lithos, 2003, 70: 269-291.

[38]

Zhang Z. M., Shen K., Sun W. D., . Fluids in Deeply Subducted Continental Crust: Petrology, Mineral Chemistry and Fluid Inclusion of UHP Metamorphic Veins from the Sulu Orogen, Eastern China. Geochim. Cosmochim. Acta, 2008, 72: 3200-3228.

[39]

Zhao Z. F., Zheng Y. F., Chen R. X., . Element Mobility in Mafic and Felsic Ultrahigh-Pressure Metamophic Rocks during Continental Collision. Geochim. Cosmochim. Acta, 2007, 71: 5244-5266.

[40]

Zheng Y. F., Chen R. X., Zhao Z. F.. Chemical Geodynamics of Continental Subduction-Zone Metamorphism: Insights from Studies of the Chinese Continental Scientific Drilling (CCSD) Core Samples. Tectonophysics, 2009, 475: 327-358.

[41]

Zheng Y. F., Fu B., Gong B., . Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China: Implications for Geodynamics and Fluid Regime. Earth Sci. Rev., 2003, 62: 105-161.

[42]

Zheng Y. F., Xia Q. X., Chen R. X., . Partial Melting, Fluid Supercriticality and Element Mobility in Ultrahigh-Pressure Metamorphic Rocks during Continental Collision. Earth Sci. Rev., 2011, 107: 342-374.

[43]

Zong K. Q., Liu Y. S., Hu Z. C., . Melting-Induced Fluid Flow during Exhumation of Gneisses of the Sulu Ultrahigh-Pressure Terrane. Lithos, 2010, 120: 490-510.

AI Summary AI Mindmap
PDF

173

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/