Metasomatic stages and scapolitization effects on chemical composition of Pasveh pluton, NW Iran

S. A. Mazhari , S. Amini , J. Ghalamghash , F. Bea

Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (5) : 619 -631.

PDF
Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (5) : 619 -631. DOI: 10.1007/s12583-011-0213-6
Article

Metasomatic stages and scapolitization effects on chemical composition of Pasveh pluton, NW Iran

Author information +
History +
PDF

Abstract

Pasveh gabbros are mafic component of a plutonic complex in the northwest Sanandaj-Sirjan Zone. These cumulative rocks are composed of plagioclase and calcic clinopyroxene (Cpx), which yield unusually high CaO (>19 wt.%) in whole-rock chemistry. Petrographical and geochemical data suggest that Pasveh gabbros can be divided into two groups: free scapolite and scapolite-bearing gabbros. The second group has higher Na2O, K2O, and P2O5 relative to free scapolite ones and is enriched in LIL (large ion lithophile) and HFS (high field strength) elements. Two stages of metasomatism affected the primary composition of mafic rocks. Firstly, high temperature reaction caused to invert primary high Ti clinopyroxene to low Ti clinopyroxene+high Ti amphibole. This reaction was extensive and included all gabbroic samples. Hydrothermal fluids involved in this process can be derived from dehydration reactions of country rocks or from other magmas incorporated in the formation of Pasveh complex pluton. The second metasomatic stage relates to scapolitization of limited parts of gabbroic rocks. An external saline fluid, which is composed of major NaCl and minor KCl and P2O5 components, impacted locally on Pasveh gabbros and formed the second metasomatic stage. Possible sources of Na and Cl are primary evaporites or brines, which were present in the host sediments of the gabbros. The carbonate-free nature of these hydrothermal fluids suggests that hydrothermal fluids responsible for the formation of scapolite in Pasveh gabbros are derived from marine evaporitic parentage.

Keywords

Iran / Sanandaj-Sirjan Zone / Pasveh pluton / gabbro / metasomatism / high Ti Cpx / low Ti Cpx / amphibole / scapolite

Cite this article

Download citation ▾
S. A. Mazhari, S. Amini, J. Ghalamghash, F. Bea. Metasomatic stages and scapolitization effects on chemical composition of Pasveh pluton, NW Iran. Journal of Earth Science, 2011, 22(5): 619-631 DOI:10.1007/s12583-011-0213-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmadi-Khalaji A., Esmaeily D., Valizadeh M. V., . Petrology and Geochemistry of the Granitoid Complex of Boroujerd, Sanandaj-Sirjan Zone, Western Iran. Journal of Asian Earth Sciences, 2007, 29(56): 859-877.

[2]

Alavi M.. Tectonics of the Zagros Orogenic Belt of Iran: New Data and Interpretations. Tectonophysics, 1994, 229(3–4): 211-238.

[3]

Alavi M.. Regional Stratigraphy of the Zagros Fold-Thrust Belt of Iran and Its Proforeland Evolution. American Journal of Science, 2004, 304(1): 1-20.

[4]

Baker J., Newton R. C.. Experimentally Determined Activity-Composition Relations for Ca-Rich Scapolite in the System CaAl2Si2O8-NaAlSi3O8-CaCO3 at 7 kbar. American Mineralogist, 1995, 80: 744-751.

[5]

Chamberlain C. P., Docka J. A., Post J. E., . Scapolite: Alkali Atom Configurations, Antiphase Domains, and Compositional Variations. American Mineralogist, 1985, 70: 134-140.

[6]

Eftekharnejad J.. 1: 250 000 Geological Map of Mahabad, 1973, Tehran: Geological Survey of Iran Press

[7]

Ghalamghash J., Nedelec A., Bellon H., . The Urumieh Plutonic Complex (NW Iran): A Record of the Geodynamic Evolution of the Sanandaj-Sirjan Zone during Cretaceous Times—Part I: Petrogenesis and K/Ar Dating. Journal of Asian Earth Sciences, 2009, 35(5): 401-415.

[8]

Heltz R. T.. Phase Relations of Basalts in Their Melting Range at P H2O=5 kb as a Function of Oxygen Fugacity-Part I. Mafic Phases. Journal of Petrology, 1973, 14(2): 249-302.

[9]

Jiang S. Y., Palmer M. R., Xue C. J., . Halogen-Rich Scapolite-Biotite Rocks from the Tongmugou Pb-Zn Deposit, Qinling, North-Western China: Implications for the Ore-Forming Process. Mineralogical Magazine, 1994, 58: 543-552.

[10]

Komada N., Moecher D. P., Westrum E. F., . Thermodynamic Properties of Scapolites at Temperatures Ranging from 10 K to 1 000 K. Journal of Chemical Thermodynamics, 1996, 28(9): 941-973.

[11]

Kullerud K., Erambert M.. Cl-Scapolite, Cl-Amphibole, and Plagioclase Equilibria in Ductile Shear Zones at Nusfjord, Lofoten, Norway: Implications for Fluid Compositional Evolution during Fluid-Mineral Interaction in the Deep Crust. Geochimica et Cosmochimica Acta, 1999, 63(22): 3829-3844.

[12]

Leake B. E., Woolley A. R., Arps C. E. S., . Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Canadian Mineralogist, 1997, 35: 219-246.

[13]

Mazhari S. A.. Petrogenesis of Naqadeh-Sardasht Plutons: [Dissertation], 2008, Tehran: Tarbiat Moallem University 216

[14]

Mazhari S. A., Bea F., Amini S., . The Eocene Bimodal Piranshahr Massif of the Sanandaj-Sirjan Zone, NW Iran: A Marker of the End of the Collision in the Zagros Orogen. Journal of the Geological Society, 2009, 166: 53-69.

[15]

Morimoto N.. Nomenclature of Pyroxenes. Canadian Mineralogist, 1989, 27: 143-156.

[16]

Otten M. T.. The Origin of Brown Hornblende in the Artfjaellet Gabbro and Dolerites. Contributions to Mineralogy and Petrology, 1984, 86(2): 189-199.

[17]

Perchuck L. L., Aranovich L. Y., Podlesskii K. K., . Precambrian Granulites of the Aldan Shield, Eastern Siberia, USSR. Journal of Metamorphic Geology, 1985, 3(3): 265-310.

[18]

Seto Y., Schimobayashi N., Miyake A., . Composition and I4/m-P42/n Phase Transition in Scapolite Solid Solutions. American Mineralogist, 2004, 89: 257-265.

[19]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of the Oceanic Basalts: Implications for Mantle Composition and Processes: In: Saunder, A. D., Norry, M. J., eds., Magmatism in the Oceanic Basalts. Geological Society, 42: 313–345

[20]

Teertstra D. K., Sherriff B. L.. Substitutional Mechanisms, Compositional Trends and the End-Member Formulae of Scapolite. Chemical Geology, 1997, 136(3–4): 233-260.

[21]

Vanko D. A., Bishop F. C.. Occurrence and Origin of Marialitic Scapolite in the Humboldt Lopolith, N.W. Nevada. Contributions to Mineralogy and Petrology, 1982, 81(4): 277-289.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/