Geological characteristics and model ages of Marius Hills on the Moon

Jun Huang , Long Xiao , Xinxing He , Le Qiao , Jiannan Zhao , Hui Li

Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (5) : 601 -609.

PDF
Journal of Earth Science ›› 2011, Vol. 22 ›› Issue (5) : 601 -609. DOI: 10.1007/s12583-011-0211-8
Article

Geological characteristics and model ages of Marius Hills on the Moon

Author information +
History +
PDF

Abstract

Marius Hills is a volcanic plateau on the nearside of the Moon. It is of great interest for its high concentration of volcanic features, including domes, cones, ridges, and rilles. However, the morphological and chronological characteristics of this plateau were not well studied due to the low resolution of early mission data. This study describes the detailed morphology of the volcanic features using the latest high spatial resolution images of the Terrain Camera (TC) onboard Selene-1 (10 m/pix) and Narrow Angle Camera (NAC) onboard the Lunar Reconnaissance Orbiter (LRO) (0.5 m/pix). We report here some new structures such as skylights and remnants of lava tubes. We have divided spectrally homogenous areas with Clementine UVVIS data and did crater size frequency distribution (CSFD) measurements with Lunar Orbiter (LO) IV and TC images in every spectral unit. We first report absolute model ages of 1.10 Ga for Marius basalt 1, 1.49 Ga for Flamsteed basalt, and 1.46 Ga for Schiaparelli Basalt. In addition, we have identified several younger lava events: they are Marius basalt 2 (814 Ma), medium to low titanium basalt (949 Ma), and undifferentiated medium titanium basalt (687 Ma). Finally, we propose a mantle plume scenario for the formation of Marius Hills, which could solve the inconsistency of previous models.

Keywords

the Moon / Marius Hills / absolute model age / volcanic feature / mantle plume

Cite this article

Download citation ▾
Jun Huang, Long Xiao, Xinxing He, Le Qiao, Jiannan Zhao, Hui Li. Geological characteristics and model ages of Marius Hills on the Moon. Journal of Earth Science, 2011, 22(5): 601-609 DOI:10.1007/s12583-011-0211-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Besse S., Sunshine J. M., Staid M. I., . Compositional Variability of the Marius Hills Volcanic Complex from the Moon Mineralogy Mapper (M3). J. Geophys. Res., 2011, 116 E00G13

[2]

Boyce, J. M., Jonnson, D. A., 1978. Ages of Flow Units in the Far Eastern Maria and Implications for Basin-Filling History. In: Lunar and Planetary Science Conference Proceedings. 3275–3283

[3]

Burgess R., Turner G.. Laser 40Ar-39Ar Age Determinations of Luna 24 Mare Basalt. Meteoritics and Planetary Science, 1998, 33: 921-935.

[4]

Ciesla, F. J., Keszthelyi, L., 2000. A Simple Model for Lava Flow Quarrying: Mechanical Erosion of the Substrate. In: Proceedings of the 31st Lunar and Planetary Science Conference. Houston, TX, United States. 1647

[5]

Fagents, S. A., Williams, D. A., Greeley, R., 2000. Thermal Erosion by Laminar Lava Flows: New Inferences. In: Proceedings of the 31st Lunar and Planetary Science Conference. Houston, TX, United States. 1038

[6]

Greeley R.. Lava Tubes and Channels in the Lunar Marius Hills. The Moon, 1971, 3(3): 289-314.

[7]

Hartmann W. K., Neukum G.. Cratering Chronology and the Evolution of Mars. Space Sci. Rev., 2001, 96(1–4): 165-194.

[8]

Haruyama J., Hioki K., Shirao M., . Possible Lunar Lava Tube Skylight Observed by SELENE Cameras. Geophys. Res. Lett., 2009, 36 21 21206

[9]

Head J. W., Gifford A.. Lunar Mare Domes: Classification and Modes of Origin. The Moon and the Planets, 1980, 22(2): 235-258.

[10]

Head J. W., Wilson L.. Absence of Large Shield Volcanoes and Calderas on the Moon: Consequence of Magma Transport Phenomena?. Geophys. Res. Lett., 1991, 18: 2121-2124.

[11]

Head J. W., Wilson L.. Lunar Mare Volcanism: Stratigraphy, Eruption Conditions, and the Evolution of Secondary Crusts. Geochimica et Cosmochimica Acta, 1992, 56(6): 2155-2175.

[12]

Heather D. J., Dunkin S. K., Wilson L.. Volcanism on the Marius Hills Plateau: Observational Analyses Using Clementine Multispectral Data. J. Geophys. Res., 2003, 108 5017

[13]

Hiesinger H., Jaumann R., Neukum G., . Ages of Mare Basalts on the Lunar nearside. J. Geophys. Res., 2000, 105(E12): 29239-29275.

[14]

Hulme G.. Turbulent Lava Flow and the Formation of Lunar Sinuous Rilles. Modern Geology, 1973, 4(2): 107-117.

[15]

Ivanov B. A.. Mars/Moon Cratering Rate Ratio Estimates. Space Sci. Rev., 2001, 96(1–4): 87-104.

[16]

Lawrence, S. J., Stopar, J. D., Hawke, B. R., et al., 2010. LROC Observations of the Marius Hills. In: Proceedings of the 41st Lunar and Planetary Science Conference. Houston, TX, United States. 1906

[17]

Lucey P. G., Blewett D. T., Jolliff B. L.. Lunar Iron and Titanium Abundance Algorithms Based on Final Processing of Clementine Ultraviolet-Visible Images. J. Geophys. Res., 2000, 105(E8): 20297-20305.

[18]

McCauley J. F.. Geologic Map of the Hevelius Region of the Moon, 1967, Reston, VA, United States: U.S. Geological Survey

[19]

McGauley J. F.. The Domes and Cones in the Marius Hill Region: Evidence for Lunar Differentiation?. Moon, 1969, 1: 133-134.

[20]

Neukum G.. Meteoritenbombardement und Datierung Planetarer Oberflächen, Habilitationsschrift: [Dissertation], 1983, Munich, Germany: Univ. München

[21]

Neukum, G., Ivanov, B. A., 1994. Crater Size Distributions and Impact Probabilities on Earth from Lunar, Terrestrial-Planet, and Asteroid Cratering Data. In: Gehrels, T., ed., Hazards due to Comets and Asteroids. University of Arizona Press, Tucson, AZ, United States. 359–416

[22]

Neukum G., Ivanov B. A., Hartmann W. K.. Cratering Records in the Inner Solar System in Relation to the Lunar Reference System. Space Sci. Rev., 2001, 96(1–4): 55-86.

[23]

Ping J. S., Huang Q., Su X. L., . Chang’E-1 Orbiter Discovers a Lunar Nearside Volcano: YUTU Mountain. Chinese Science Bulletin, 2009, 54(23): 4534-4536.

[24]

Rutherford, M. J., Hess, P. C., Daniel, G. H., 1974. Liquid Lines of Descent and Liquid Immiscibility in High Ti Lunar Basalt. Lunar Sci. Inst., Houston, Texas, United States. 657–659

[25]

Stöffler D., Ryder G.. Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System. Space Sci. Rev., 2001, 96(1–4): 9-54.

[26]

van der Bogert, C. H., Hiesinger, H., McEwen, A. S., et al., 2010. Discrepancies between Crater Size-Frequency Distributions on Ejecta and Impact Melt Pools at Lunar Craters: An Effect of Differing Target Properties? In: Proceedings of the 41st Lunar and Planetary Science Conference. Houston, Texas, United States. 2165

[27]

Weitz C. M., Head J. W.. Spectral Properties of the Marius Hills Volcanic Complex and Implications for the Formation of Lunar Domes and Cones. J. Geophys. Res., 1999, 104(E8): 18933-18956.

[28]

Whitford-Stark, J. L., Head, J. W., 1977. The Procellarum Volcanic Complexes: Contrasting Styles of Volcanism. In: Proceedings of the 8th Lunar and Planetary Science Conference. Houston, TX, United States. 2705–2724

[29]

Whitford-Stark J. L., Head J. W.. Stratigraphy of Oceanus Procellarum Basalts: Sources and Styles of Emplacement. J. Geophys. Res., 1980, 85(B11): 6579-6609.

[30]

Wilson L., Head J. W.. Ascent and Eruption of Basaltic Magma on the Earth and Moon. J. Geophys. Res., 1981, 86(B4): 2971-3001.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/